Composite Polymer-Clay Hydrogels Based on Bentonite Clay and Acrylates: Synthesis, Characterization and Swelling Capacity

Sh. N. Zhumagaliyeva, R. S. Iminovа, G. Zh. Kairalapova, М. M. Beysebekov, M. K. Beysebekov, Zh. A. Abilov

Abstract


Clay minerals, especially montmorillonite, as well as bentonite minerals with a high content of montmorillonite, have the highest ability to adsorb various organic compounds. In the East Kazakhstan region, the Manyrak deposit has huge deposits of “pink” bentonite clay (BC) with 70% of montmorillonite, extensively studied back in the 70-80-s. Now it is successfully useful in the organo-polymer composition as a mineral filler of polymer composite materials (PCM) and finds the application as domestic sorbents for the group extraction of non-ferrous ions in the purification of industrial sewage and drinking water. This article presents the results of research of creating polymer-clay composite materials based on domestic bentonite clay with improved sorption characteristics. The polymeric matrix of the composites consists of acrylates ‒ polyacrylic and polymethacrylic acids (PAA and PMAA). BC-PAA and BC-PMAA gels were obtained by radical polymerization “in situ” using the intercalation method (and without it). Preliminary intercalation forms more homogeneous and interconnected composite gels. An increase in the content of the clay component and the cross-linking agent in the starting mixture results in a higher cross-linking rate and compaction of the composite gels. The behavior of the swelling of gels under the influence of temperature, pH, ionic strength indicates their polyelectrolyte character with dominant hydrogen bonds and partial hydrophobic interactions (the latter is improved in the case of BC-PMAA). The preparation of composite gels based on local BC and PAA and PMAA expands the range of composite materials and can be used as sorbents for wastewater treatment.


Keywords


bentonite clay; gel polymer-clay composites; synthesis, intercalation; swelling degree; polymer-clay composition; morphological structure

Full Text:

PDF

References


  1. V.N. Pavlyuchenko S.S. Ivanchev, Polym. Sci. Ser. A 51 (7) (2009) 743-760. Crossref
  2. M.M. Beysebekov, R.S. Iminova, Sh.N. Zhumagalieva, M.K. Beysebekov, Zh.A. Abilov. Eurasian Chem.-Technol. J. 16 (2014) 321‒328. Crossref
  3. E.E. Yergozhin, A.M. Akimbaeva. Organomineral sorbents and polyfunctional systems based on natural aluminosilicate and coal-mineral raw ma­terials. Almaty: Print-S., 2007, p. 373 (in Russian).
  4. A. Zhumaly, E. Blagikh, Zh. Ibrayeva, A. Didukh, G. Gabsattarova, S. Kudaibergenov. Prospects for the use of composite hydrogel materials in pipeline transport in Kazakhstan. Engineering Education and Science in the 21st Century: Problems and Prospects: Proc. International Forum on the 80th Anniversary of K.I. Satpayev KazNTU, Almaty, V I (2014) 50‒56 (in Russian).
  5. Xiaoying Wang, Yumin Du, Jianhong Yang, Yufeng Tang, Jiwen Luo, J. Biomed. Mater. Res. Part A 84 (2) (2008) 384–390. Crossref
  6. K. Haraguchi, T. Takada, Macromol. Chem. Phys. 215 (3) 2014 295–305. Crossref
  7. S.N. Chvalun, L.A. Novokshonova, A.P. Korobko, P.N. Brevnov, Rossijskij khimicheskij zhurnal [Russian Chemical Journal] LII (5) (2008) 52–57 (in Russian).
  8. E.K. Lavrentyeva, S.G. Starodubtsev, A.R. Khokhlov, V.V. Volkov, K.A. Dembo, Kolloidnyj zhurnal [Colloid Journal] 70 (5) (2008) 650‒655 (in Russian).
  9. E.I. Unuabonah, A. Taubert, Appl. Clay Sci. 99 (2014) 83‒92. Crossref
  10. F. Hussain, M. Hojjati, M. Okamoto and R.E. Gorga, J. Compos. Mater. 40 (17/2006) 1511– 65. Crossref
  11. Ping-Sheng Liu, Li Li, Ning-Lin Zhou, Jun Zhang, Shao-Hua Wei, Jian Shen, J. Appl. Polym. Sci. 104 (4) (2007) 2341–2349. Crossref
  12. S. Abdurrahmanoglu, V. Can, O. Okay, J. Appl. Polym. Sci. 109 (2008) 3714–3724. Crossref
  13. Z.B. Sakipova, R.D. Dilbarkhanov, A.U. Tulegenova, Farmacija Kazahstana [Pharmacy of Kazakhstan] 7 (2009) 57‒61 (in Russian).
  14. V.Z. Kozin, Bentonite clays. Izvestija vysshih uchebnyh zavedenij, Gornyj zhurnal [The number of higher educational institutions. Mining journal] 4 (2003) 47–52 (in Russian)
  15. S.S. Ray, M. Okamoto, Prog. Polym. Sci. 28 (2003) 1539–1641. Crossref
  16. Ling Liu, Shoulian Wei, Xuejun Lai, J. Appl. Polym. Sci. 124 (5) (2012) 4107–4113. Crossref
  17. A. Thangaraja, V. Savitha, K. Jegatheesan, International Journal of Nanotechnology and Applications 4 (2010) 31–38.
  18. Sh.B. Battalova. Physico-chemical basis for the preparation and use of catalysts and adsorbents from bentonites. Alma-Ata: Nauka, 1986. p. 168 (in Russian).
  19. T. Szabó, A. Bakandritsos, V. Tzitzios, S. Papp, L. Korösi, G. Galbács, K. Musabekov, D. Bolatova, D. Petridis and I. Dékány, Nanotechnology 18 (2007) 285602. Crossref
  20. Zh.A. Abilov, M.K. Bisebekov, Sh.N. Zhumagalieva, R.S. Iminova, International Journal of Biology and Chemistry 8 (2) (2015) 77–80.
  21. Zh.A. Abilov, M.K. Beisebekov, Sh.N. Zhu-magalieva, B.M. Kudaibergenova, Internation­al Journal of Biology and Chemistry 1 (2011) 81–86.
  22. Zh.A. Abilov, M.K. Beisebekov, Sh.N. Zhumagalieva, B.M. Kudaibergenova, J. Chem. Soc. Pak. 35 (5) (2013) 1279–1283.
  23. Sh.N. Zhumagalieva, M.K. Beisebekov, Zh.A. Abilov, Sh.S. Ahmedova. Vestnik KazNU. Seriya Himicheskaya [Chemical Bulletin of Kazakh National University] 3 (23) (2001) 41–51 (in Russian).
  24. D.P. Salo, F.D. Ovcharenko, N.N. Kruglitsky Highly dispersed minerals in pharmacy and medicine. - K.: Naukova Dumka. 1969, p. 45–52 (in Russian).
  25. D.A. Dikin, K.M. Kohlhaas, G.H. Dommett, S. Stankovich, R.S. Ruoff, Microsc. Microanal. 12 (S02) (2006) 674‒675. Crossref
  26. R.A. Vaia, E.P. Giannelis, Macromolecules 30 (1997) 8000–8009. Crossref




DOI: http://dx.doi.org/10.18321/ectj672

Refbacks

  • There are currently no refbacks.