Investigation of Physicochemical and Electrochemical Properties of Single-Walled Carbon Nanotubes Modified with Nitrogen

V.V. Chesnokov, A.S. Chichkan, A.V. Puzynin, D.A. Svintsitsky, Z.R. Ismagilov, V.N. Parmon

Abstract


Composites of the type “nitrogen-containing carbon coating – single-walled carbon nanotubes” were obtained by the treatment of single-walled carbon nanotubes (SWCNT) in a gaseous 40%NH3-1%C2H2-C2H4 mixture at temperatures 600–750 °C. Single-walled carbon nanotubes etched in aqua regia (SWCNTet) and doped with nitrogen (N-SWCNT) were studied by XPS, electron microscopy and IR spectroscopy. Various oxygen-containing functional groups were found to reside on the surface of initial SWCNTet. Upon treatment of SWCNTet in 40%NH3-1%С2Н2-C2H4, polymerization and condensation of hydrocarbons resulted in the formation of a thin nitrogen-containing carbon coating. Specific capacitance per a weight of initial and nitrogen-doped carbon nanotubes in an aqueous electrolyte with 1 M H2SO4 was measured. Specific capacitance of carbon electrodes was found to change symbately with the content of nitrogen-containing functional groups on the SWCNT surface.


Keywords


supercapacitors; carbon nanotubes; modification; nitrogen; electrochemical properties

Full Text:

PDF

References


  1. V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, Appl. Phys. A Mater. 82 (2006) 567–573. Crossref
  2. A. Burke, J. of Power Sources 91 (1) (2000) 37–50. Crossref
  3. J.R. Miller, P. Simon, Science 321 (5889) (2008) 651–652. Crossref
  4. M. Sevilla, L. Yu, L. Zhao, C.O. Ania, M.-M. Titiricic, ACS Sustainable Chem. Eng 2 (2014) 1049‒1055. Crossref
  5. S. Maldonado, S. Morin, K.J. Stevenson, Carbon 44 (2006) 1429‒1437. Crossref
  6. V. Thirumal, A. Pandurangan, R. Jayavel, S.R. Krishnamoorthi, R. Ilangovan, Curr. Appl. Phys. 16. (2016) 816‒825. Crossref
  7. R.A. Buyanov, Catalyst Coking. Nauka, Novosibirsk, 1983, p. 208 (in Russian).
  8. V.V. Chesnokov, A.S. Chichkan, Int. J. Hydrogen Energ. 34 (2009) 2979‒2985. Crossref
  9. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corp, Eden Prairie, Minnesota, USA, 1992.
  10. G.Yu. Simenyuk, A.V. Puzynin, O.Yu. Podyacheva, A.V. Salnikov, Yu.A. Zakharov, Z.R. Ismagilov Eurasian Chemico- Technological Journal 19 (2017) 201‒208. Crossref
  11. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41 (2012) 798–828. Crossref
  12. R. Arrigo, M.E. Schuster, Z. Xie, Y. Yi, G. Wowsnick, L.L. Sun, K.E. Hermann, M. Friedrich, P. Kast, M. Hävecker, A. Knop- Gericke, and R. Schlögl, ACS Catal. 5 (2015) 2740–2753. Crossref
  13. J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, and J.M. Jiménez-Mateos, J. Am. Chem. Soc. 118 (34) (1996) 8071–8076. Crossref
  14. J.A. Fern´andez, T. Morishita, M. Toyoda, M. Inagaki, F. Stoeckli, T.A. Centeno, J. Power Sources 175 (1) (2008) 675–679. Crossref
  15. A. Burke, Electrochim. Acta 53 (3) (2007) 1083–1091. Crossref




DOI: http://dx.doi.org/10.18321/ectj676

Refbacks

  • There are currently no refbacks.