The Catalytic Effects of Different Transition Metal Oxide on the Combustion Characteristics of AN/MgAl ‒ based Composites Gas Generators

K. Kamunur, J.M. Jandosov, R.G. Аbdulkarimova, K. Hori, Zh.K. Yelemessova

Abstract


In this research work, the catalytic effects of different transition metal oxides on the combustion characteristics of AN/MgAl ‒ based composite gas generators were studied. Gas generators were combusted at the pressure of 1 MPa, 3 MPa and 5 MPa in the combustion chamber and the burning rates were determined. It was stated that the addition of metal oxides into the composition of the gas generators lowers the pressure of the ignition point and increases the burning rate. The use of the mechanical MgAl alloys (50/50) as a fuel allowed the ignition of the gas generator at a lower temperature. The method of Differential Thermal Analysis (DTA) was used to investigate the effect of metal oxides addition on the AN/MgAl-based gas generators thermal decomposition characteristics.


Keywords


ammonium nitrate (AN); composite gas generator; burning characteristics; transitional metal oxide; MgAl mechanical alloy

Full Text:

PDF

References


  1. M. Kohga, T. Naya, K. Okamoto, Int. J. Aerospace Eng. 2012 (2012) Article ID 378483. Crossref
  2. T. Naya, M. Kohga, Aerosp. Sci. Technol. 27 (1) (2013) 209‒215. Crossref
  3. H. Habu and K. Hori, Journal Science and Technology of Energetic Materials 67 (6) (2006) 187‒192.
  4. S.R. Chakravarthy, J.M. Freeman, E.W. Price, R.K. Sigman, Propellants Explos. Pyrotech. 29 (4) (2004) 220‒230. Crossref
  5. G.B. Manelis and D.B. Lempert, Progress in Propulsion Physics 1 (2009) 81‒96. Crossref
  6. S. Levi, D. Signoriello, A. Gabardi, M. Molinari, L. Galfetti, L.T. DeLuca, S. Cianfanelli, and G.F. Klyakin, Progress in Propulsion Physics 1 (2009) 97‒108. Crossref
  7. S. Ganesan, Dr.B.T.N. Sridhar, International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS 14 (04) (2014) 110‒115. Paper ID: 147004-3838-IJMME-IJENS
  8. M. Kohga and K. Okamoto, Combust. Flame 158 (3) (2011) 578–582. Crossref
  9. Yasmine Aly, Mirko Schoenitz, Edward L. Dreizin, Combust. Flame 160 (2013) 835–842. Crossref
  10. H. Murata, Y. Azuma, T. Tohara, M. Simoda, T. Yamaya, K. Hori, and T. Saito, Journal Science and Technology of Energetic Materials 61 (2) (2000) 58–66.
  11. Y.L. Shoshin, R.S. Mudryy, and E.L. Dreizin, Combust. Flame 128 (3) (2002) 259–269. Crossref
  12. Hiroto Habu and Keiichi Hori, Journal Science and Technology of Energetic Materials 67 (6) (2006) 187‒192.
  13. Y. Aly, M. Schoenitz, and E.L. Dreizin, Combust. Flame 160 (4) (2013) 835‒842. Crossref
  14. K. Kamunur, J.M. Jandosov, R.G. Abdulkarimova, K. Hori, M.K. Atamanov, Z.A. Mansurov, Combustion and Plasma Chemistry 14 (3) (2016) 189‒194 (in Russian).
  15. M. Kohga and S. Nishino, Propellants, Explosives, Pyrotechnics 34 (4) (2009) 340– 346. Crossref
  16. Vesna Rodić, Scientific Technical Review 62 (3-4) (2012) 21‒27.
  17. Tomoki Naya and Makoto Kohga, Propellants explosive, pyrothec. 38 (2013) 87–94. Crossref
  18. Tomoki Naya and Makoto Kohga, Propellants, Explosives, Pyrotechnics 38 (4) (2013) 547– 554. Crossref
  19. Makoto Kohga, Tomoki Naya, J. Energ. Mater. 33 (4) (2015) 288‒304. Crossref
  20. Jin-Kyu Lee and Shae K. Kim, Mater. Trans. 52 (7) (2011) 1483‒1488. Crossref
  21. Karen S. Martirosyan, Lei zheng Wang, Arol Vicent, Dan Luss, Propellants, Explosives, Pyrotechnics 34 (6) (2009). 532–538. Crossref
  22. Guoqiang Jian, Jingyu Feng, Rohit J. Jacob, Garth C. Egan, and Michael R. Zachariah, Angew. Chem. Int. Edit. 52 (2013) 1–5. Crossref
  23. Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Kyung Tae Kim, and Soo Hyung Kim, ACS Appl. Mater. Interfaces 8 (14) (2016) 9405–9412. Crossref




DOI: http://dx.doi.org/10.18321/ectj682

Refbacks

  • There are currently no refbacks.