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Abstract

The actual work focuses on the development of electrochemically active and stable 
electrodes for a high temperature proton-conducting electrolyte with a perspective of 
application in intermediate temperature electrochemical devices. The comparative 
study of the electrochemical performance of the La1.7M0.3NiO4+δ – based (M = Ca, Sr, 
Ba) composite cathodes with proton-conducting BaCe0.89Gd0.1Cu0.01O3 or oxygen-ion-
conducting Ce0.8Sm0.2O1.9 ceramic components in contact with the proton-conducting 
electrolyte BaCe0.89Gd0.1Cu0.01O3 was performed by an impedance spectroscopy in 
wet air during 1500 h. The composites were used as functional layers in bi-layered 
electrodes with current collector layers made of 98 wt.% LаNi0.6Fe0.4O3 + 2 wt.% 
CuO or 99.4 wt.% La0.6Sr0.4MnO3 + 0.6 wt.% CuO. 

1. Introduction

High temperature proton-conducting oxide ma-
terials are of great fundamental and practical interest 
because of the phenomenon of proton conductivity 
which appears along with oxygen-ionic conduc-
tivity when placed in a humidified atmosphere [1, 
2]. Usage of such co-ionic electrolyte materials in 
solid oxide fuel cells (SOFCs) will give increased 
efficiency as a result of the higher open circuit volt-
age value and, correspondingly, the higher power 
output compared with SOFCs based on unipolar 
oxygen-ion-conducting electrolytes [3, 4]. Among 
high temperature proton conductors, BaCeO3 
doped with acceptor dopants (such as Gd, Sm, Y) 
demonstrates the highest co-ionic conductivity [5, 
6]. BaCeO3-based materials, despite some difficul-
ties with their practical application because of weak 
chemical stability in the presence of salt-forming 
gas components (such as CO2, H2S, SO2), could be 
the ideal electrolytes to be used in the pure hydro-
gen-fed SOFCs and other electrochemical devices 
such as electrolyzers, hydrogen and combustible 
gas sensors etc [1, 7].

The new electrolyte materials require well 
matched and electrochemically active electrode 
materials. The first studies concerning SOFCs 

based on BaCe(Zr)O3 reported the use of a platinum 
cathode [7]. However, Pt is not preferred for practi-
cal applications due to its high cost. Moreover, the 
Pt electrodes were found to show significant po-
larization losses caused by the limited number of 
reaction sites at the cathode/electrolyte interface. 
From this viewpoint, cathode materials with mixed 
oxygen- ionic and electronic conductivity widely 
used in SOFCs on the base of unipolar oxygen-ion 
conductors (such as stabilized ZrO2, doped CeO2, 
doped LaGaO3) so far as their application permits 
to broaden significantly a zone of electrochemical 
reaction [8], can be also applied in SOFCs with 
co-ionic conductors. However the development 
of an electrode material with proton conductivity 
would still be preferable since such cathodes allow 
the simultaneous transport of ionic (proton, oxy-
gen-ion) and electronic defects under typical fuel 
cell operating conditions, thus offering to extend the 
electrochemically active area and correspondingly, 
decrease the polarization losses [9]. Additional-
ly, electrode materials must be thermodynamical-
ly stable under working conditions: 400–900 °C, 
10−5 < pO2/atm ≤ 0.21, in the presence of H2O and 
CO2. Thermal affinity between electrolyte and cath-
ode materials should be considered in order to at-
tain both long-term stability and cycling. 
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Over the past 10 years the layered nickelate 
La2NiO4+δ (LNO) with the coefficient of thermal 
expansion (CTE) α equal to 12.9–13.5 × 10−6 K−1, 
high value of the oxygen surface heteroexchange 
constant k (2.5 × 10−6 cm s−1 at 800 °C) and ox-
ygen diffusion coefficient D (1.7 × 10−7 cm2 s−1 at 
800 °C) [10] has been the subject of intensive 
studies including its application in an SOFC with 
proton conducting electrolytes [11–14]. As far as 
La2NiO4+δ is a p-type conductor in the temperature 
range 400–900 °C, appropriate acceptor doping in 
A-site could improve its electronic conductivity by 
generating extra electron holes for charge compen-
sation. Experimental results reveal that doping with 
a certain amount of alkaline-earth metals (Ca, Sr. 
Ba) leads to an increase in total conductivity of sub-
stituted La2NiO4+δ [15–17]. It has been found that 
LnNiO4+δ (Ln = Pr, Nd) substituted by Ca and Sr 
show better cathodic properties than the undoped 
materials [18–20]. But there are few studies dealing 
with the electrochemical properties of substituted 
La2NiO4+δ. In our previous work on the develop-
ment of the cathodes for Ce0.8Sm0.2O1.9 electrolyte 
we showed that despite having increased conduc-
tivity, Sr and Ca-substituted La2NiO4+δ possessed 
lower polarization conductivity in comparison with 
the undoped one [17, 21]. We found that one pos-
sible way to increase the electrochemical perfor-
mance was to use the composite materials with an 
ionic conductor in their composition, preferably of 
the same chemical composition as the electrolyte 
support, as a functional layer. In the case of a proton 
conducting electrolyte support a proton conducting 
ceramic in the composite electrode material would 
be preferable in terms of broadening the zone of 
electrochemical reaction and having a better match 
in CTE with the electrolyte. 

The actual work focuses on the comparative 
study of the electrochemical performance of the 
La1.7M0.3NiO4+δ – based bi-layered electrodes 
(M = Ca, Sr, Ba) in contact with the proton-con-
ducting electrolyte BaCe0.89Gd0.1Cu0.01O3. The 
electrolyte material was selected because of its 
superior densification at low sintering tempera-
tures and high proton conductivity [2, 6, 22]. The 
composites based on La1.7M0.3NiO4+δ were made 
using BaCe0.89Gd0.1Cu0.01O3 ceramic component in 
their composition (50:50 wt.%) to ensure a partial 
proton conductivity in the electrode material and, 
for comparison, with oxygen ion conducting ce-
ramic component Ce0.8Sm0.2O1.9. The composites 
were used as functional layers in bi-layered elec-
trodes. The current collector layers were made of 
98 wt.% LаNi0.6Fe0.4O3+2 wt.% CuO or 99.4 wt.% 

La0.6Sr0.4MnO3 + 0.6 wt.% CuO, which were used 
before with the electrodes based on layered nicke-
lates in contact with Ce0.8Sm0.2O1.9 electrolyte [17, 
23]. The performance of the electrodes and their 
long-term stability during 1500 h were investigated 
by impedance spectroscopy in wet air (5% H2O).

2. Experimental

La1.7M0.3NiO4+δ (M = Ca (LCNO), Sr (LSNO) 
and Ba (LBNO)), LаNi0.6Fe0.4O3 (LNF) and 
La0.6Sr0.4MnO3 (LSM) were synthesized via a two-
step ceramic technology from the reagents with a 
purity of no less than 99.96%. The initial compo-
nents were mixed in a planetary mill in isopropyl 
alcohol media using steel balls for 1 h, dried and 
calcined at 1150 °C for 2 h. The intermediate prod-
uct underwent additional milling for 0.5 h followed 
by final synthesis at 1250 °C for 5 h. After final 
sintering, the powders were ball-milled up to the 
specific surface area equal to 1.5–2 m2/g (SORBI 
N.4.1 analyzer). 

The electrolytes BaCe0.89Gd0.1Cu0.01O3 (BCG-
Cu) and Ce0.8Sm0.2O1.9 (SDC) were synthesized 
using ceramic technology. After mixing, the ini-
tial components were calcined for 2 h at 1100 and 
1050 °C, respectively, and ball-milled. The in-
termediate products were dry-pressed into disks 
at 150 MPa. The disks were then sintered at 
1400 °C (BCGCu) and 1550 °C (SDC) for 5 h. 
Density of BCGCu and SDC electrolyte disks, de-
termined from their geometrical dimensions and 
weights, was equal to 93–95% of the crystallograph-
ic values. XRD analysis of the powdered samples 
was performed by DMAX-2500, Rigaku Co. Ltd. 
diffractometer using Ni-filtered Cu Kα radiation in 
the range of 15 ≤ 2θ ≤ 85º. The thermal expansion of 
the materials was carried out using a Tesatronic TT-
80 dilatometer between the room temperature and 
900 °C with a heating/cooling rate of 3 °C min–1 in 
air. The average values of the coefficient of thermal 
expansion CTE were calculated on the linear sec-
tion of dilatometric data. 

To prepare the composite electrode materials 
the electrolyte disks were ground up to no less than 
2.5 m2/g and mixed with the electrode powders in 
1:1 weight proportion with the addition of alcohol 
and a polyvinylbutyral organic binder. The elec-
trodes were sited symmetrically on the BCGCu 
electrolyte substrates with the electrode surface 
area S equal to 0.25–0.36 cm2 in the form of bi-lay-
ered coatings by brush-painting. The functional 
layers LCNO-BCGCu, LCNO-SDC, LSNO-BCG-
Cu, LSNO-SDC, LBNO-BCGCu and LBNO-SDC 
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were sintered at 1200 °C. After sintering, the thick-
ness of the functional layers was about 20–25 µm. 
The collector layer was sited onto the pre-sintered 
functional layers. The sintering temperatures of the 
collector layers were 1050 and 1160 °C for LNF + 2 
wt.% CuO and LSM + 0.6 wt.% CuO, respectively. 
The thickness of the collector layers was 50–90 µm 
to ensure a lower in-plane resistance of the elec-
trodes, which is in a high importance for the elec-
trodes in terms of practical application. The elec-
trode morphology was characterized by scanning 
electron microscope JSM-5900LV (JEOL). Exam-
ples of bi-layer electrodes are presented in Fig. 1.

The electrochemical study was carried out us-
ing FRA-1260 with EI-1287 (Solartron Instruments 
Inc.). Up to six test samples were placed into a 
measuring cell. Each of them was pressed between 
two platinum current collecting nets with a thick-
ness of 0.01 cm and a mesh size of 0.1 × 0.1 cm, 
which were connected to the measuring equipment 
by means of Pt wires via a two-electrode four-cable 
mode that permits the exclusion of the impedance 
of current-supplying cables from the overall imped-
ance of the system. Measurements were performed 
in the temperature range 550–850 °C in wet air (5% 
H2O) in the frequency range of 0.01 Hz to 100 kHz 
at the amplitude of applied sinusoidal signal of 20 
mV. Each measurement was finished by measuring 
a full dc resistance Rdc of the cell. 

The polarization resistance (Rη) of the electro-
chemical cell with symmetrically arranged elec-
trodes was calculated as follows: 

serial resistance determined by extrapolation of the 
high-frequency region of an impedance spectrum 
to the intersection with the x-axis and related to 
the electrolyte resistance, contact electrolyte-elec-
trode resistance and a part of lateral resistance of 
the electrode.

The long-term study on the samples with bi-lay-
ered electrodes was performed at 700 °C during 
1500 h. The test samples with single-layered elec-
trodes without collector were subjected to the 
same conditions and after holding for 1000 h were 
retrieved for XRD testing. At 500 and 1000 h of 
testing the samples were cooled down to room tem-
perature and heated again.

3. Results and Discussion

According to XRD (Table 1), the individual 
electrode materials were single-phase with a tetrag-
onal (LCNO, LSNO, LBNO), hexagonal (LNF) and 
rhombohedrally distorted perovskite (LSM) struc-
ture. The electrolyte materials (XRD analyses were 
performed after high-temperature sintering at 1400 
and 1550 °C for BCGCu and SDC, respectively) 
were characterized by a perovskite structure for pro-
ton conducting BCGCu electrolyte and by a fluorite 
structure in the case of oxygen ion conducting SDC.

LCNO, LSNO and LBNO in combination 
with both BCGCu and SDC ceramic component 
demonstrated good adhesion to the BCGCu elec-
trolyte after sintering at 1200 °C. XRD analysis of 
the sintered functional layers revealed the appear-
ance of some secondary phases (Table 2). Chem-
ical interaction with SDC mainly consisted of a 
redistribution of the elements between perovskite 
and fluorite phases with the extraction of a trace 
amount of Се11O20 and, in case of Ca-substituted 
nickelate, Се11O20 and LaNiO3. The degree of such 

 
,

2
)( SRR

R hfdc −=η
(1)

where S is an electrode surface area, Rdc is a dc 
resistance of the electrochemical cell, and Rhf is a 

Fig. 1. Cross-sectional view of the bi-layered electrodes on the BCGCu electrolyte: (a) LCNO-SDC/LNF; (b) LCNO-
BCGCu/LSM; surface structure of the LNF and LSM collector layers is shown in boxes. The porosity of functional and 
collector layers was approximately 35 and 50%, respectively.
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Table 1 
Electrode and electrolyte powders characterization

Formula and designation Space group Parameters
Electrode
La1.7Ca0.3NiO4+δ(LCNO)

I4/mmm a, Å
3.835

b, Å
3.835

c, Å
12.614

La1.7Sr0.3NiO4+δ(LSNO)
La1.7Ba0.3NiO4+δ(LBNO)

I4/mmm
I4/mmm

3.837
3.848

3.837
3.848

12.711
12.793

LаNi0.6Fe0.4O3(LNF) 
La0.6Sr0.4MnO3(LSM) 

R3c
R3c

5.507
5.490

5.507
5.490

13.255
13.356

Electrolyte
BaCe0.89Gd0.1Cu0.01O3(BCGCu)
Ce0.8Sm0.2O1.9(SDC)

Pmcn
Fm3m

8.791
5.437

6.252
-

6.218
-

Table 2 
Phase composition of La2NiO4-based functional electrode layers after sintering at 1200 °C 

and after holding at 700 °C during 1000 h (XRD data)

Electrode composition
before sintering

Phase composition 
after sintering

Phase composition 
after 1000 h

LCNO-BCGCu
BaCe0.9Gd0.1O2.95

La1.7Ca0.3NiO4

BaCe0.9Gd0.1O2.95
La1.7Ca0.3NiO4

BaO

Ce0.9Ca0.1O1.9
La1.7Ca0.3NiO4

BaCe0.9Gd0.1O2.95
Ba2Cu3Ox

LSNO-BCGCu 
BaCe0.9Gd0.1O2.95

La1.7Sr0.3NiO4

BaCe0.9Gd0.1O2.95
La1.71Sr0.19NiO3.9

BaO
Ba2Cu3Ox

BaCe0.9Gd0.1O2.95
La1.71Sr0.19NiO3.9

BaO
Ba2Cu3Ox

LBNO-BCGCu 
BaCe0.9Gd0.1O2.95
La1.52Ba0.48NiO4

BaCe0.9Gd0.1O2.95
La1.52Ba0.48NiO4

BaNi4O8
La2NiO4.1

BaCe0.9Gd0.1O2.95
La1.52Ba0.48NiO4

BaO

LCNO-SDC
La1.7Ca0.3NiO4
Sm0.2Ce0.8O1.9

Sm0.2Ce0.8O1.9
La1.7Ca0.3NiO4

LaNiO3
Се11O20

Sm0.2Ce0.8O1.9
La1.7Ca0.3NiO4

LaNiO3
Sm2O3

LSNO-SDC
La1.7Sr0.3NiO4
Sm0.2Ce0.8O1.9 

Sm0.2Ce0.8O1.9
La1.71Sr0.19NiO3.9

Се11O20

Sm0.2Ce0.8O1.9
La1.71Sr0.19NiO3.9

SrNxOz
NiO

LaNiO3

LBNO-SDC
La1.52Ba0.48NiO4
Sm0.2Ce0.8O1.9 

La1.7Ba0.3NiO4
Sm0.2Ce0.8O1.9

Се11O20

Sm0.2Ce0.8O1.9
BaOLa2NiO4

BaNiO2
NiO

interaction is strongly dependent on the ionic radi-
us of the rare earth element (REE) and it decreases 
with radius increasing (0.99, 1.12 and 1.34 Å for Ca, 
Sr and Ba). It is probably connected with a decrease 
in the solubility limit of the elements in a fluorite 
structure, which, as is known from the literature, is 
equal to 20, 8 and less than 2 mol.% for Ca, Sr and 
Ba, respectively [24]. Nevertheless, the interaction 

of substituted nickelates with SDC is remarkably 
lower than that in the case of undoped La2NiO4+δ 
[21]. The interaction in sintered composites with 
BCGCu was greater, except of Ba. The amount of 
the BaO extracted when evaluated from XRD data 
reached 4–6% in case of LCNO and 7–8% in case 
of LSNO, and in case of LBNO only trace amount 
of secondary phases was registered.
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Figure 2 a-b depict the temperature dependence 
of polarization conductivity of the investigated 
bi-layered electrodes with BCGCu and SDC ceram-
ic component in their functional layer, respective-
ly. The lowest values of polarization conductivity 
were found for the composites with Ca (0.74 and 
0.88 S cm−2 at 700 °C, respectively). LCNO-SDC 
in contact with BCGCu electrolyte showed almost 
the same ση value as in contact with SDC electro-
lyte [21]. The composites with Sr showed high val-
ues of the polarization conductivity for both BCG-
Cu and SDC ceramic component (1.25 and 1.21 S 
cm−2, respectively). It should be noted, that in the 
case of Sr and Ca the composite electrodes with 
different ceramic components had almost the same 
values of polarization conductivity. Ba-substituted 
nickelate displayed diverse behaviour: if the char-
acteristics of the LBNO-SDC were middling (Ta-
ble 3) then the LBNO-BCGCu electrode showed 
both the highest ση and σhf values (1.59 S cm−2 and 
13.57 × 10−3 S cm−2). The highest value of the po-
larization conductivity of the composite electrode 
L2NiO4+δ-LaNi0.6Fe0.4O3-δ (70:30) measured on a 

symmetrical cell in contact with the proton-con-
ducting electrolyte BaZr0.1Ce0.7Y0.2O3-δ, presented in 
literature, is 0.47 S cm−2 (calculated from the data, 
presented in Table 2 in the recent work of J. Hou et 
al. [14]). All the developed electrodes in this work 
exhibited superior characteristics. Therefore, the 
experimental results reveal that fabrication of the 
bi-layered electrodes with a composite functional 
layer made of substituted LNO in a mixture with 
an ionic or co-ionic ceramic component and with 
an LNF collector layer is a feasible way to improve 
electrode characteristics.

The specific serial resistance of the cells with 
the composite electrodes studied is the highest for 
LSNO-BCGCu (Table 3, Fig. 3). It is most proba-
bly connected with the strong interaction between 
the components in the composite material. The 
close agreement in the values of the activation en-
ergies of the reciprocal serial resistance of the elec-
trodes (0.42–0.46 eV) and the total conductivity of 
the BCGCu electrolyte (0.47 eV) suggests that the 
serial resistance is determined, mainly, by the re-
sistance of the electrolyte support.

Fig. 2. Arrenius plots of the polarization conductivity of the bi-layered composite electrodes with BCGCu (a) and SDC 
(b) ceramic component.

Table 3
Polarization (Rη) and serial resistance (Rhf) of the composite electrodes measured after sintering (0 h) and 

after long-term testing (1500 h); energies of activation of polarization, serial conductivity and 
total conductivity in air for BCGCu electrolyte

Electrode 
composition

Rη0 
[Ω cm2]

Rη1500 
[Ω cm2]

dRη1500 
[%]

Rhf0 
[Ω cm]

dRhf1500 
[%]

Eaη 
[eV]

Eahf 
[eV]

LCNO-BCGCu 1.14 1.87 63.48 84.24 2.22 1.29 0.45
LSNO-BCGCu 0.73 0.68 -7.06 94.31 -0.04 1.60 0.46
LBNO-BCGCu 0.63 0.30 -53.02 73.69 5.95 1.42 0.42
LCNO-SDC 1.40 1.69 20.85 86.01 -1.72 1.39 0.46
LSNO-SDC 0.80 0.66 -1751 88.55 3.26 1.21 0.43
LBNO-SDC 1.28 1.44 13.12 90.31 11.38 1.37 0.44
BCGCu 0.47
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Fig. 4. Relative change in the serial resistance (a) and polarization resistance (b, c) of the bi-layered composite electrodes 
in long-term testing at 700 °C.

The long-term tests showed that serial resis-
tance of all the electrodes investigated decreased 
during the first 500 h with subsequent total growth 
no more than 11% of the initial value (Table 3, 
Fig. 4 a). Polarization resistance of both composite 
electrodes with Ca-substituted nickelate increased 
dramatically during testing and in fact, the greatest 
changes took place during the first 500 h (Fig. 4 b, 
c). The LBNO-SDC composite electrode showed 
moderate changes while the polarization resistance 
of LBNO-BCGCu, LSNO-SDC and LSNO-BCG-
Cu decreased with time. 

Figure 5 shows the spectra of the composite 
electrodes before and after long-term testing. All 
the measured spectra were asymmetric in shape, 
implying more than one electrode process. Usually 
for the description of spectra of LNO-based elec-
trodes the equivalent circuits containing two [14, 
25] or three distributed elements [26], composed 
of a constant phase element (Q) in parallel with 
a resistance (R) are used. The equivalent capaci-
tance C and relaxation frequency f of an electrode 
process corresponding to a specific (RQ) can be 
applied as characteristic parameters to identify 
various electrode processes. The high-frequency 
electrode processes with the effective capacitances 

of approximately 10−6–10−5 F cm−2 have been as-
sociated with the transport of oxygen ions across 
the interface between the electrode and electrolyte. 
In the middle frequency range the processes with 
the effective capacitances of 10−4–10−3 is assigned 
to the diffusion of oxygen ions into the electrode 
volume accompanied by a charge transfer, while 
in the low-frequency range the processes with the 
effective capacitances of 10−3–10−1 is ascribed to 
the adsorption and dissociation of the molecular 
oxygen on the electrode surface [26]. 

Fig. 3. Arrenius plots of the reciprocal serial resistance of 
the bi-layered composite electrodes.
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Fig. 5. Nyquist plots of the impedance spectra measured before (closed symbols) and after (opened symbols) long-term 
testing for the composite electrodes with BCGCu (a, b, c) and SDC (e, f, g) ceramic component.
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According to an estimation of the contribution of 
the high- and low-frequency processes in the total 
polarization resistance by the analysis of the spectra 
before and after 1500 h of testing the following fea-
tures were found: the capacitance and resistance of 
the high-frequency process for LCNO-BCGCu did 
not change with time, while the capacitance of the 
low-frequency reduced by the order of magnitude 
and the resistance grew from 4.89 to 8.6 Ω (Fig. 5 
a). For LCNO-SDC the capacitance and resistance 
of the high-frequency process did not show signif-
icant changes as well, where as the capacitance of 
the low-frequency process increased by the order 
of magnitude and its resistance grew from 2.46 to 
6.66 Ω (Fig. 5 d). Such serious changes in spectra 
seemed to appear due to the strong interaction of 
the components of the composite electrodes based 
on LCNO, as was mentioned above (Table 2).

LSNO-BCGCu and LSNO-SDC (Fig. 5 b, e) 
showed polarization characteristics stable in time. 
The resistance of high-frequency processes slight-
ly decreased with time with simultaneous small in-
creasing the resistance of the electrode processes 
in the middle and low frequency ranges. Similarly 
to the electrodes based on Ca-substituted nickelate 
these changes are related to the chemical interaction 
between the electrode components but for Sr-sub-
stituted nickelate the interaction is lower. The main 
feature of both electrodes based on Ba-substituted 
nickelates (Fig. 5 c, f) and LSNO-SDC (Fig. 5 e) 
is a significant increase in the serial resistance Rhf. 
As far as the shape of the high-frequency region 
of spectra did not change during long-term testing, 
an increase in the serial resistance may be relat-
ed to incompatibility in CTE for some composite 
electrodes and BCGCu electrolyte. To verify this 
assumption the temperature dependences of linear 
expansion of the electrolyte and electrode materi-
als under investigation were measured and the CTE 
values of the composite materials were calculated 
as an arithmetic mean value of the individual com-
ponents. The CTE value of the BCGCu electrolyte 
changes from 10.5 × 10−6 K−1 in the temperature 
range 100–575 °C to 8.6 × 10−6 K−1 in the tempera-
ture range 575–900 °C, respectively, the СTE val-
ue of the SDC electrolyte in the temperature range 
100–900 °C is 12.5 × 10−6 K−1. The individual CTE 
values of the LCNO, LSNO and LBNO electrode 
materials are 13.9, 14.2 and 15.2 × 10−6 K−1, re-
spectively. The CTE values of the composites with 
BCGCu and SDC are 11.3–11.9, 11.4–12.4, 11.9–
12.9 × 10−6 K−1 and 13.2, 13.4, 13.9 × 10−6 K−1, 
respectively. Despite having adequate adhesion 
during sintering a difference of more than 30% in 

CTE leads to partial delamination of the electrode, 
increasing the serial resistance.

It should be noted that in contrast to the LB-
NO-SDC electrode, which showed an increase both 
in serial and total resistance (Fig. 5 f), the total re-
sistance of the LBNO-BCGCu electrode remained 
almost constant with time. Besides the polariza-
tion resistance of the LBNO-BCGCu electrode 
decreased by approximately a factor of two and 
reached 0.30 Ω · cm2 after the long-term testing.

4. Conclusions

This work aimed to study the influence of the sub-
stituting element in the bi-layered La1.7M0.3NiO4+δ – 
based (M = Ca, Sr, Ba) composite cathodes with 
BaCe0.89Gd0.1Cu0.01O3 or Ce0.8Sm0.2O2-δ ceramic 
component on their electrochemical behavior in 
contact with BaCe0.89Gd0.1Cu0.01O3 proton-conduct-
ing electrolyte. The best characteristics (the lowest 
value of the polarization resistance in combination 
with low serial resistance) were found for the elec-
trode with La1.7Ba0.3NiO4+δ – BaCe0.89Gd0.1Cu0.01O3 
functional layer and 99.4 wt.% La0.6Sr0.4MnO3 + 
0.6 wt.% CuO collector (0.63 Ω cm2 and 73.69 Ω 
cm at 700 °C, respectively). After 1500 h of high 
temperature testing and 2 thermo-cycles the polar-
ization resistance of the developed electrode re-
duced to 0.30 Ω cm2.
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