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Abstract

Unlike natural gas, hydrogen gas mixtures stored in underground reservoirs undergo 
active chemical transformations under the influence of methanogenic microorganisms 
inhabiting in porous reservoirs. They lead to reduction of hydrogen and carbon 
dioxide concentrations and increase methane concentration. This chemical activity 
coupled with bacterial dynamics and gas/water flow through porous medium 
causes the phenomenon of self-organization such as the occurrence of autowave 
spatial structures, whose dynamics is characterized by a multiplicity of scenarios 
and bifurcations between them. In this paper we continue to develop the qualitative 
theory of self-organization in underground hydrogen storage, for more complicated 
cases that include the mechanism of chemotaxis, which is one of the main types of 
bacterial movement, and takes into account the flow of both phases. The analysis 
of scenarios is based on the model of two-phase compositional flow coupled with 
population dynamics.

1. Introduction

Renewable energy sources such as hydrogen 
(H2), solar energy, geothermal energy are consid-
ered as the energy of the future [1-2], due to low 
greenhouse-gas emissions during their production, 
absence of toxic byproducts when they are utilized 
and less negative affection to the environment. 
Among these energy sources, hydrogen energy is 
considered as the cleanest one with promising ap-
plication at large scale in the future. The global en-
ergy cycle related to H2 includes [11]: the renewable 
energy production from windmills and solar cells, 
the conversion of the exceedingly produced electric-
ity to hydrogen through electrolysis, the hydrogen 
storage to regulate the difference between intermit-
tent production and permanent gas consumption, 
and application in fuel cells to produce electricity 
and for vehicles as a fuel.

In case of producing large amounts of hydrog-
enous gas, the most efficient and most inexpensive 
method of storing large amounts of hydrogen is to in-
ject it in geological formations like aquifers, deplet-
ed gas reservoirs, or salt caverns [3–4, 11, 15–19]. 

Several underground storages of hydrogen or town 
gas exist in the world, for instance, Teeside in the 
UK, Kiel in Germany, Lobodice in Czech, Beynes – 
an ex-storage in France and storages in Texas state 
and Russia.

As described in [7, 8, 10, 11] the behaviour of 
hydrogen in natural rocks is very different from 
that of the natural gas, as H2 is chemically active 
in presence of anaerobic bacteria, which initiate the 
following global chemical reaction between injected 
H2 and CO2:

CO2 + 4H2 = CH4 + 2H2O, or CO + 3H2 = CH4 + H2O   (1)

The in-situ and laboratory observations really 
have revealed the increase of CH4 in the stored gas 
contents and the decrease of CO2 and H2. Along with 
this other effects have been observed as the creation 
of a spatial alternation of the areas saturated pref-
erably by hydrogen or methane. The explanation to 
these effects have been done in [10] where it was 
shown that the coupling between hydrogen and CO2 
transport in the reservoir and bio-chemical reactions 
leads to the appearance of auto-waves equivalent to 
the observed spatial alternations. 

Article info

Received: 
10 January 2015

Received and revised form: 
24 March 2015

Accepted:
18 April 2015



Analytical and Numerical Study of the Impact of Methanogenic Bacteria on Gas Composition

Eurasian Chemico-Technological Journal 17 (2015) 243–249

244

In contrast to papers [9–10] where the fluid was 
considered as a single-phase gas with residual im-
mobile water, and only the diffusion was retained as 
the mechanism of bacterial motion, we introduce the 
following new elements in the present paper: 

– the flow is two-phase; water is mobile;
– the appearance of additional form of bacterial 

colony: the neuston, which is a thin film living at the 
interface between water and gas;

– the chemotaxis as the second important form 
of bacterial motion, which is the main mecha-
nism of neuston formation. The chemotaxis is the 
mechanisms of bacterial motion to the direction of 
nutrients.  

The first version of the developed mathematical 
model was published in [12], in which the impact of 
the chemotaxis was not considered.   

2. Analytical Study of the Impact of the Che-
motaxis 

2.1. Model of population dynamics 

Let us assume that a mixture of H2 and CO2 with 
large domination of hydrogen is injected in an aqui-
fer, which contains water, gas and an initial popu-
lation of methanogen bacteria. We introduce the 
chemotaxis, which is the mechanisms of bacterial 
motion to the direction of nutrients (to the neuston). 

The two-phase system in porous medium rep-
resents a fine dispersed alternation of gas bubbles 
or channels with water channels of droplets. At the 
macrsocale such a system is considered as two inter-
penetrating continua coexisting at each space point. 
The water-gas interfaces which are observed on the 
pore scale disappear in macroscopic description. At 
any point two phases are identified by saturation of 
water S.

Both phases can consist of several chemical 
components: 

(1) = H2, (2) = CO2, (3) = H2O, (4) = CH4. 

The gas phase essentially consists of H2 and 
CO2, while liquid consists mainly of H2O with low 
concentration of CO2, H2, and CH4 (the injected gas 
contains low concentration of CO2, and hydrogen is 
low soluble in water). This determines the specific 
situation when bacteria live in water but the major 
part of nutriments is concentrated in gas phase.

We consider two kinds of bacteria:
– bacteria present in water: they can be plankton 

or biofilms attached to pore walls wetted by water;
– the neuston: a biofilm situated just at the inter-

face between water and gas.

Bacteria living in water consume dissolved H2  
and CO2. Bacteria from neuston consume H2 and 
CO2 directly from the gas phase. On the macroscop-
ic scale (Darcy’s scale) both phases contain both 
kinds of bacteria which can be found at any spatial 
points. Despite the fact that CO2 is highly soluble 
in water, it is low present in the injected gas, while 
hydrogen is very low soluble in water. Therefore, we 
should assume that the concentrations of both these 
components in water are of the same order.

In gas we have an abundant resource of H2 and 
a sufficiently low resource of CO2. Then the eating 
rate of bacteria in neuston is controlled only by the 
concentration of CO2. 

Bacterial population can grow due to replication 
of species and can decay due to natural or forced 
death. As usually, we assume that the population 
grow rate is proportional to the eating rate. For the 
kinetics of bacterial growth we accept the nonlinear 
form suggested in [10], which represents a combi-
nation of the Turing’s and Monod’s kinetics. The ki-
netics of decay is assumed to be constant.

Bacteria also can move. We distinguish several 
types of their motion:

– the plankton can move chaotically similar to 
Brownian motion (bacterial diffusion);

– they can move due to chemotaxis;
– bacteria living in water can be transported by 

water flow (single-phase bacterial advection);
– bacteria living in neuston can be transported si-

multaneously with the movement of the water-gas 
interface (two-phase bacterial advection)

We assume that bacteria in neuston are not trans-
ported by chemotaxis but can diffuse. We keep dif-
fusion as it is the mechanism which stabilizes the 
mathematical properties of the solution, which is 
considered in the paper [12].

The disappearance of gas-water interfaces in 
macroscopic equations imposes some difficulties in 
describing the neuston which represents a pore-scale 
object. This means that the movement of neuston in 
macroscopic equations can be obtained by homoge-
nization of its pore-scale motion.
 
2.2. Asymptotic model for low gas saturation

Let’s consider the asymptotic model for low gas 
saturation as S → 1. In this case the neuston is ne-
glected, and bacteria living in water dominate far 
from the interface. Consequently, the chemotaxis, 
which determines the neuston formation, should be 
taken into account. Since the reaction kinetics de-
pends on the concentrations of both CO2 and H2, the 
model of the process resulting from [12] and con-
sists of three equations in this case (for k = 1.2):
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Assuming that water density, and Henry coef-
ficients are constant, and neglecting variations of 
saturation S which is assumed to be close to 1, we 
obtain the following system of three equations:
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      is the mole fraction of chemical component k in 
phase i; N is number of bacteria ; S is volume water 
saturation; i = w, g is the phase (w – water, g – gas);  
Db is the coefficient of bacterium diffusion in bulk 
water;      is the diffusion coefficient of chemical 
component k in water phase; te,w is characteristic time 
of eating at vanishing resource; td is the time of de-
cay; ρi is the molar density of phase i (mpl/m3); ϕ is 
the porosity; Ginj is the molar rate of gas injection 
(mol/s); Ω is the total volume of the reservoir; c(k), inj 

is the injection concentration of component k in the 
injected gas (constant value); Dch is the maximal che-
motaxis rate; λch is empirical parameter; H(k) is the 
Henry coefficient of component k, which is a given 
function of pressure; ηw is the rendering coefficient 
(the coefficient of proportionality between the eating 
rate and growth rate).

Moreover, when the concentration of one of the 
components is very low, we obtain the model which 
may be analyzed without simplifications. Let us as-
sume that water contains very low concentration of 

hydrogen, that is,             . Then concentration
   may be considered as variable with small 

change. From (2) the following expression is ob-
tained:
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which is the Turing model [13], if the chemotaxis 
term is neglected.

For the case without chemotaxis, three cases were 
analysed in [10]:

(i) The case of spatially invariant solutions (no spe-
cial gradient, only the time derivatives are retained) 
can be reduced to a dynamic system of the second 
order: the existence of the limit cycle was revealed 
for some intervals of parameter variation (α1 = α3 = 
β = 1, 0.90032 < q1 < 1.0), which means the system 
oscillates in time and the oscillations tend to be peri-
odic at the infinite time; 

(ii) The case of time independent, stationary, solu-
tions (no time derivatives, only the special gradients 
are retained) also can be reduced to another dynamic 
system of the second order: the appearance of the fo-
cus was shown, which means the periodic solutions 
in space. 

(iii) The non-stationary and non space-invariant 
case (all the derivatives have been retained) has been 
analyzed numerically: it was shown that an instabil-
ity appeared in the system, which evolved next to 
a stable solution stabilizing in time and having the 
form of periodic spatial waves.  

2.3. Reduced model of the process, limit stationary 
spatial waves

To analyse the impact of the chemotaxis, we have 
to keep the spatial gradients. In contrast we can try 
to neglect the time variation and analyze only the 
stationary solutions, which represent the limit of the 
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non-stationary solutions at t → ∞. In the 1D case our 
model problem becomes:
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ary conditions:
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which means that the right-hand boundary is imper-
meable, while a bacterial concentration and H2 con-
centration are specified (injected) at the left-hand 
boundary.  

Similar to [10] we will neglect the bacterial dif-
fusion: Db = 0. 

The case of this system without chemotaxis was 
analyzed in [10]. To analyse the impact of the che-
motaxis we apply the method of perturbation, by as-
suming that the chemotaxis parameter, Dch is small. 
Then the solution of (4)-(5) may be searched in the 
following form:   

C= C0 + C1 + ...,                   N = N0= N1 + ...   (6)

where C0, N0 = O(1), C1, N1 = O(Dch), etc. Then, 
applying the method of perturbation, we obtain the 
following results:

- For the zero approximation, C0, N0:
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2.4. Analysis of the first approximation: impact of 
the chemotaxis

From the second equation of system (8) we can 
calculate N1 if the function C1 is known:
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This equation is no longer autonomous (due to the 
explicit presence of x), but is linear with non-con-
stant periodic coefficients. Its analytical solution in 
terms of the known special functions does not exist 
[14]. But we can analyze this equation qualitatively. 

The periodicity of the coefficient χ(x) and the 
right-hand part f(x) does not mean the periodicity of 
the solution of Eq. (10). In contrast, for the homoge-

neous equation:                             , the periodic solution

can exist only if coefficient χ(x) <0, which impos-
es the inequality on the parameters: β – 2α3C0(x)
N0(x)<0. Otherwise, i.e., when β – 2α3C0(x)N0(x)>0, 
the solutions of the homogeneous equation (10) are 
exponential, and contain both the exponentially de-
creasing and increasing components. 

In all these cases, the right-hand part, which is 
responsible for the chemotaxis, plays the role of an 
external force that progressively attenuates or am-
plifies the behavior of the homogeneous solution. 
Therefore, the periodic solutions of non-homoge-
neous equation (10) can not exist.  

Consequently, we expect to have two scenarios 
for (10): (i) the solution is non-oscillating with al-
most exponential growth in space; (ii) the solution 
is oscillating but non-periodic in space. The total 
solution (6) is expected to be oscillating (due to the 
zero-order term), but non-periodic in space, due to 
the first-order term.  

We see that the chemotaxis perturbes the periodic 
solutions and involves some disordered behaviour, 
such that the concentrations becomes non-periodic, 
but still oscillating functions. 
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This is explained by the fact that the chemotax-
is means the oriented motion of bacteria to the di-
rection of nutriments. If a zone with an exceeding 
amount of nutriments arises, then bacteria tend to 
move towards this zone. This oriented motion per-
turbs the system periodicity. 

The results of numerical simulations presented in 
following section confirm this qualitative analysis. 

3. Numerical Study of the Impact of the Che-
motaxis   

We also analyzed the total non-stationary be-
haviour of the system (3) in general case. This anal-
ysis can be performed only numerically.   

3.1. Problem formulation and parameters

We analyze system (3) of gas injection in two-di-
mensional case with constant initial conditions and 
Neumann boundary conditions which correspond to 
impermeable boundaries:

 1| 0==tN  1| 0
)1( ==tgc

 
,0|

)1(

=
∂

∂
Ω∂n

cg  
0| =

∂
∂

Ω∂n
N

where n is the normal direction to the boundary. Ta-
ble 1 shows the data used in the calculations.

(11)

 )1(
wD

Table 1
Calculated data

Computational grid 100*100
Time step 0.001
q1 (perturbation) 0.95+0.01
q1 0.95

0.01

Dch 0.001
α1 1
α3 1
β 1
λch 1

The initial values are located within the zone of 
attraction of the limit cycle, so that the solution of 
this problem is space-invariant and oscillating in 
time, if the chemotaxis would be neglected. The 
flow rate q1 in (3) represents the hydrogen injection 
into the reservoir. The numerical simulations show 
that the solution invariable in space and varies only 
in time, as expected. We have obtained the oscilla-
tions in time. 

After this, since a fixed moment, this space-in-
variant solution was perturbed in the form of an in-
stantaneous non-zero concentration gradient applied 
to the small vicinity of the origin. The evolution of 
the perturbation is shown in Figs. 1 and 2. 

Fig. 1. Evolution of auto-waves of bacterial population with diffusion and chemotaxis at t = 50 ÷ 500. 

Bacteria with  diffusion
Db = 0.001, Dch = 0

Bacteria with diffusion
Db = 0.00001, Dch = 0.001

t = 50 t = 50

t = 500 t = 500
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3.2. The evolution of the solution in time

After perturbation, the irregular waves travelling 
throughout the overall domain were observed. Their 
evolution was very fast establishing to the structure 
presented by regular periodic waves invariable in 
time. The Figs. 1 and 2 represents the results of nu-
merical calculation of the evolution of the hydrogen 
concentration, the variation in the number of bacte-
ria at t = 50 ÷ 500. 

As seen, sufficiently regular ring waves are de-
veloped with excess and deficiency of hydrogen 
and bacteria in some areas, which alternate with 
each other. In areas with high bacterial concentra-
tions, where the reaction CO2 + 4H2 = CH4 + 2H2O 
is rapid, the alternation with the ring excess and de-
ficiency of bacteria appear, whereby the methano-
genic bacteria generates methane. In case of taking 
into account the chemotaxis of bacteria, the bacteria 
forms neuston. 

In this work an attempt has been carried out to 
qualitatively analyze the impact of methanogen-
ic bacteria on the dynamics of the generation of 
methane in underground hydrogen storage. The 
occurrence of undamped oscillations during the 
time, which tends asymptotically to periodic waves, 
means that the system undergoes self-organization 

Fig. 2. Hydrogen concentration at t = 50 ÷ 500. 

of new structures in the form of methane accumu-
lations. It should be noted that in several cases the 
damping oscillations were observed in space caused 
by the chemotaxis. In the limit of computational 
time, the steady-state spatial pattern of frozen waves 
is observed. Following the results presented in Fig. 
2, the effect of a natural in situ separation of hy-
drogen gases was observed, which corresponds to 
the observations in underground storage Lobodice 
[7, 8].  

According to these simulations, the solution is 
periodic in the case without chemotaxis (the left-
hand figures). For the case when the chemotaxis is 
the dominating mechanism of bacterial motion (the 
right-hand figures), the solution remains non-peri-
odic for any moment of time. 

4. Conclusions

In papers [7] and [8] it was proved that an under-
ground storage of hydrogen can work as a natural 
chemical reactor producing methane from hydrogen 
and carbon dioxide. The reaction between H2 and 
CO2 (1) is catalyzed by methanogenic bacteria and 
happens in the form of the bacterial metabolism.

In paper [10] the first mathematical model of 
the process was developed. It was based on the 

Hydrogen
Db = 0.001, Dch = 0

Hydrogen
Db = 0.00001, Dch = 0.001

t = 50 t = 50

t = 500 t = 500
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single-phase flow model coupled with population 
dynamics equation. The bacterial population was 
considered in the average; various forms of its ex-
istence were reflected in special nonlinear kinetic 
function of population growth.

In paper [12] we suggested the two-phase flow 
model coupled with the dynamics of two bacterial 
populations: bacteria living in water and neuston – a 
thin biofilm situated at the interfaces between water 
and gas. We also suggested the mathematical model 
of chemotaxis in two-phase fluid, which is the main 
mechanism of neuston formation: bacteria living in 
water feel the presence of nutriments concentrated 
in the injected gas and move to the direction of the 
interfaces water-gas. 

In the present paper, we studied the above men-
tioned mathematical model [12] analytically and 
numerically. To simplify the analysis, several sim-
plifications have been accepted, as, for instance, the 
low gas saturation. For this case, we obtained the 
asymptotic model (3). The main objective of the 
analysis was to study the impact of the chemotaxis 
on the storage behaviour.  

The analytical study was performed under the 
assumption that the chemotaxis was weak, so that 
we could apply the method of perturbation. We an-
alyzed the behaviour of stationary solutions, which 
correspond to the infinite times. We obtained the 
non-linear autonomous dynamic system, which 
depends on space coordinates, (8). In the zero ap-
proximation (without chemotaxis), we obtained the 
system analyzed previously in [10]. The influence 
of the chemotaxis appears through the first approxi-
mation, which leads to a linear ordinary differential 
equation with periodic coefficient. Its solution com-
bines the properties of an oscillating function and 
an exponential function, therefore it is not periodic. 
This means that the chemotaxis perturbs the sys-
tem periodicity, which corresponds to the physical 
meaning of the oriented motion of bacteria caused 
by the chemotaxis. 
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