Modification of Hydrolysis Lignin by Hydrogen Peroxide to Obtain an Effective Adsorbent of Highly Toxic Rocket Fuel

  • A. Yu. Kozhevnikov M.V. Lomonosov Northern (Arctic) Federal University, Core Facility Center “Arktika”, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
  • M. P. Semushina M.V. Lomonosov Northern (Arctic) Federal University, Core Facility Center “Arktika”, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
  • E. A. Podrukhina M.V. Lomonosov Northern (Arctic) Federal University, Core Facility Center “Arktika”, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
  • D. S. Kosyakov M.V. Lomonosov Northern (Arctic) Federal University, Core Facility Center “Arktika”, Northern Dvina Emb. 17, 163002 Arkhangelsk, Russia
Keywords: hydrolytic lignin, 1,1-dimethylhydrazine, unsymmetrical dimethylhydrazine, UDMH, rocket fuel, adsorbent, modification

Abstract

Lignin, a large scale by-product of papermaking and bioethanol production, is applied now in various fields. One of the main areas of use is in the development of different adsorbents, including those intended for detoxification of the spills of 1,1-dimethylhydrazine-based rocket fuel. The present work has shown the possibility of oxidative modification of hydrolytic lignin by hydrogen peroxide to improve the efficiency of the adsorbent. The change in functional composition of the modified adsorbent was studied by IR and NMR spectroscopy. It was shown that the oxidative treatment led to an increase in the content of carbonyl and carboxyl groups, which act as the active adsorption centres for hydrazine molecules. The optimum oxidation conditions were found. An increase in treatment duration from 15 to 120 min and in concentration of hydrogen peroxide from 6 to 30% did not have a significant effect on the functional composition and adsorption properties of lignin.

 

References

[1]. G. Choudhary, H. Hansen, Chemosphere 37 (5) (1998) 801–843. Crossref

[2]. M.A. Armour, 1991, Hazardous Laboratory Chemicals Disposal Guide, CRC Press Inc., Boca Raton, Fl, p .154.

[3]. Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Man. Geneva. World Health Organization, International Agency for Research on Cancer. 1972-Present. (Multivolume work). 1999, p. 1433.

[4]. N.S. Kasimov, P.P. Krechetov, T.V. Koroleva, Earth Sciences 409 (2006) 744–746. Crossref

[5]. A.A. Byr’ka, K.G. Bogolitsyn, D.S. Kosyakov, A.Yu. Kozhevnikov. Study of the transformation of 1,1-dimethyhylhydrazine in the soil cover of the places of the fall of the first stages of carrier rockets]. Ekologiya i promyshlennost’ Rossii [Ecology and Industry of Russia] 9 (2011) 29‒31 (in Russian).

[6]. I.A. Rodin, D.N. Moskvin, A.D. Smolenkov, and O.A. Shpigun, Russian Journal of Physical Chemistry A, Focus on Chemistry 82 (2008) 911–915. Crossref

[7]. L. Carlsen, B.N. Kenessov and S.Ye. Batyrbekova, Environ Health Insights 18 (1) (2008)11‒20. PMCID: PMC3091350

[8]. M.P. Semushina. Sorbtsiya nesimmetrichnogo dimethylgidrazina kak vysokotoksichnogo komponenta raketnogo topliva ligno-guminovymi veshchestvami [Sorption of asymmetric dimethylhydrazine, as a highly toxic propellant component, lignohumine substances]: PhD thesis: Arkhangelsk, 2015, p. 111.

[9]. K.G. Bogolitsyn, A.Yu. Kozhevnikov, D.S. Kosyakov, M.P. Semushina. Sorbent dlya obezzarazhivaniya prolivov raketnogo topliva [Sorbent for disinfection of straits of rocket fuel] Patent RF 2529999 – No 2013123981/04, byul. No. 28, p. 7.

[10]. O.T. Kondrat’ev. Operativnye metody indikatsii i opredeleniya nesimmetrichnogo dimethylgidrazina v gazovoi srede [Operative methods for indicating and determining asymmetric dimethylhydrazine in a gaseous medium]: PhD thesis: Krasnodar, 2003, p. 112.

[11]. Zh.K. Zhubatov, M.K. Nauryzbaev, A.D. Tovasarov, D.S. Alekseeva, Sh.S. Bisariyeva, Analysis of the technology of detoxification of soils contaminated with rocket fuel components.

[12]. Vestnik Kazakhskogo natsionalnogo tekhnicheskogo universiteta imeni K.I. Satpaeva [Bulletin of the Kazakh National Technical University named after K.I. Satpayev] 1 (2010) 186‒191.

[13]. A.R. Zarei, A. Pedram, H. Rezaeivahidian, Desalination and Water Treatment, 57 (2015) 18906–18914. Crossref

[14]. Huan Chun Wang, Xiao Li Gou, Xiao Meng Lv, Adv. Mater. Res. 634-638 (2013) 1026–1030. Crossref

[15]. V.A. Demin, Khimiya protsessov tselyulozno-bumazhnogo proizvodstva. Part I. Struktura, svoistva i khimicheskiye reaktsii lignina [Chemistry of pulp and paper production processes. Part I. Structure, properties and chemical reactions of lignin: a textbook] SLI. Syktyvkar, 2008, p. 64.

[16]. V.V. Vershal’, E.N. Medvedeva, N.A. Rybal’chenko, V.A. Babkin. Issledovaniye razlozheniya peroksida vodoroda v shсhelochnoy srede i ego vliyanie na otbelku lignocellyulozy i gomogennoe okisleniye lignina. Khimiya rastitel'nogo syr'ja [Chemistry of plant raw materials] 1 (1998) 45‒50 (in Russian).

[17]. Kosmonavtika. [Astronautics. Encyclopedia edited by V.P. Glushko]. M., “Sovetskaya entsiklopediya”, 1985, p. 292 (in Russian).

[18]. A.V. Obolenskaya, Z.P. El’nitskaya, A.A. Leonovich, Laboratornye raboty po khimii drevesiny i celljulozy: Uchebnoe posobie dlja vuzov [Laboratory work on wood chemistry and cellulose: A manual for universities] M. “Ekologiya”, 1991, p. 320 (in Russian).

[19]. G.F. Zakis, L.N. Mozhejko, G.M. Telysheva Metody opredelenija funkcional'nyh grupp lignina [Methods for the determination of functional groups of lignin]. Riga, 1975, p. 175.

[20]. D.T. Pegg, M.R. Bendall, J. Magn. Reson. 53 (1983) 229–234. Crossref

[21]. E.P. Barret, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (3) (1951) 373–380. Crossref

[22]. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (2) (1938) 309–319. Crossref

[23]. G. Horvath, K. Kawazoe, J. Chem. Eng. Japan, 16 (6) (1983) 470–475. Crossref

[24]. S. Greg, K. Sing. Adsorbtsiya, udel’naya poverkhnost’, poristost’, [Adsorption, specific surface, porosity] M.: Mir., 1984, p. 310.

[25]. Certificate VNIIMS. Metodika vypolneniya izmereniy massovoy kontsentratsii 1,1-dimethylgidrazina (NDMG) v probakh prirodnykh i stochnykh vod metodom ionnoy khromatografii s amperometricheskim detektirovaniyem [Method for measuring the mass concentration of 1,1-dimethyhylhydrazine (NDMH) in natural and waste water sampling by ion chromatography with amperometric detection] M.: MVI MGU, No 2-02, 2006, p. 12.

[26]. G.A. Kalabin, L.V. Kanitskaya, D.F. Kushnarev, Kolichestvennaya spektroskopiya YaMR prirodnogo organicheskogo syr’ya i produktov ego pererabotki [Quantitative NMR spectroscopy of natural organic raw materials and products of its processing]. M.: Khimiya, 2000, p. 407 (in Russian).

[27]. N.V. Ul’yanovskii, D.S. Kosyakov, I.I. Pikovskoi, Yu.G. Khabarov, Chemosphere, 174 (2017) 66– 75. Crossref

[28]. A.K. Buryak, O.G. Tataurova, A.V. Ul’yanov. Study of the 1,1-dimethylhydrazine transformation products on the model adsorbents by gas chromatography/mass spectrometry method. Mass-spektrometrija [Mass spectrometry] 1 (2) (2004) 147–152 (in Russian).

[29]. D.S. Kosyakov, N.V. Ul’yanovskii, K.G. Bogolitsyn, O.A. Shpigun, Int. J. Environ. Anal. Chem. 94 (2014) 1254–1263. Crossref
Published
2017-06-30
How to Cite
[1]
A. Kozhevnikov, M. Semushina, E. Podrukhina, and D. Kosyakov, “Modification of Hydrolysis Lignin by Hydrogen Peroxide to Obtain an Effective Adsorbent of Highly Toxic Rocket Fuel”, Eurasian Chem. Tech. J., vol. 19, no. 2, pp. 155-161, Jun. 2017.
Section
Articles