Nanocatalysts for Low-Temperature Oxidation of CO: Review

Authors

  • G. G. Xanthopoulou Institute of Nanoscience and Nanotechnologies, NCSR “Demokritos”, Agia Paraskevi 15310 Athens, Greece
  • A. V. Novikov Department of Theory of Aircraft Engines, Samara State Aerospace University, 34 Moskovskoye shosse, 443086 Samara, Russia
  • Yu. A. Knysh Department of Theory of Aircraft Engines, Samara State Aerospace University, 34 Moskovskoye shosse, 443086 Samara, Russia
  • A. P. Amosov cSHS Engineering Center, Samara State Technical University, 244 Molodogvardeyskaya Str., 443100 Samara, Russia

DOI:

https://doi.org/10.18321/ectj190

Abstract

The oxidation of CO covers a wide range of applications from gas masks, gas sensors, indoor air quality control to hydrogen purification for polymer electrolyte fuel cells. The reaction attracts renewed interest both in fundamental and applied research of catalysis and electrochemistry. Recent developments and trends in catalysis towards the synthesis of nanocatalysts for CO oxidation are discussed in this review. Different modifications made to conventional catalysts synthesis approaches for preparation of nanocatalysts are critically analyzed. Nanocatalysts developed on the basis of noble metals completely convert CO at temperatures below 0 ºC. The development of active and stable catalysts without noble metals for low-temperature CO oxidation is a significant challenge. It was found that Co3O4 nanorods can be steadily active for CO oxidation at a temperature as low as –77 ºC. High activity of catalysts at low temperatures connected with nanosize particles and high surface area. This review summarized main directions of nanocatalysts development for CO low temperature oxidation.

 

References

[1]. A.A. Gokhale, J.A. Dumesic, M.J. Mavrikakis, Am. Chem. Soc. 130 (2008) 1402−1414.

[2]. L.L. Wang, L.M. Yang, Y.H. Zhang, W. Ding, S.P. Chen, W.P. Fang, Y.Q. Yang, Fuel Process. Technol. 91 (2010) 723−728.

[3]. M. Shelef, and R.W. McCabe, Catal. Today 62 (2000) 35−50.

[4]. G. Lenaers, Sci. Total Environ. 189–190 (1996) 139−147.

[5]. R.C. Rijkeboer, Catal. Today 11 (1991) 141−150.

[6]. D.L. Trimm, and Z.I. Önsan, Catal. Rev. Sci. Eng. 43 (2001) 31–84.

[7]. S.H. Oh, and G.B. Hoflund, J. Catal. 245 (2007) 35–44.

[8]. G. Xanthopoulou, Appl. Catal. A: Gen. 182 (2) (1999) 285−295.

[9]. G. Xanthopoulou, Appl. Catal. A: Gen.187 (1) (1999) 79−88.

[10]. G. Xanthopoulou, Chem. Eng. Technol. 24 (10) (2001) 1025−1034.

[11]. G. Xanthopoulou, Appl. Catal. A: Gen. 185 (1999) 185−192.

[12]. G. Xanthopoulou, Appl. Catal. B: Environ. 19 (1998) 37−44.

[13]. G. Xanthopoulou, G.A. Vekinis, Eurasian Chemi¬co-Technological Journal 12 (1) (2010) 17−21.

[14]. P. Bera, K.C. Patil, V. Jayaram, G.N. Subbanna, M.S. Hegde, J. Catal. 196 (2) (2000), 293–301.

[15]. G. Xanthopoulou, S. Varitis, K. Karanasios, G. Vekinis, SHS Journal 23 (2) (2014) 92−100.

[16]. K. Karanasios, G. Xanthopoulou, G. Vekinis, L. Zoumpoulakis, Int. J. Self-Propag. High-Temp Synth. 23 (4) (2014) 221−231.

[17]. M. Piumetti, D. Fino, N. Russo, Appl. Catal. B: Environ. 163 (2015) 277–287.

[18]. C.-F. Yan, H. Chen, R.-R. Hu, S. Huang, W. Luo, C. Guo, M. Li, W. Li, Int. J. Hydrogen Energy 39 (32) (2014) 18695–18701.

[19]. L.H. Reddy, G.K. Reddy, D. Devaiah, B.M. Reddy Appl. Catal. A: Gen. 445–446 (2012) 297–305.

[20]. G. Sedmak, S. Hocevar, J. Levec, J. Catal. 135 (2003) 135−150.

[21]. J.B. Wang, D.H. Tsai, T.J. Huang, J. Catal. 208 (2002) 370−380.

[22]. J.L. Ayastuy, A. Gurbani, M.P. González, Marcos, M. A. Gutiérrez, Ortiz, Ind. Eng. Chem. Res. 48 (2009) 5633−5641.

[23]. H.L. Zhang, L.H. Ren, A.H. Lu, W.C. Li, Chin. J. Catal. 33 (2012) 1125−1132.

[24]. P. Bera, K.C. Patil, V. Jayaram, G.N. Subbanna, M.S. Hegde J. Catal. 196 (2000) 293–301.

[25]. E.M. Slavinskaya, R.V. Gulyaev, A.V. Zadesenets, O.A. Stonkus, V.I. Zaikovskii, Yu. V. Shubin, S.V. Korenev, A.I. Boronin, Appl. Catal. B: Environ. 166–167 (2015) 91–103.

[26]. J. L.Margitfalvi, I. Borbáth, M. Hegedűs, Á. Szegedi, K. Lázár, S. Gőbölös, S. Kristyán, Catal. Today 73 (2002) 343–353.

[27]. A. Biabani, M. Rezaei, Z. Fattah, J. Nat. Gas Chem. 21 (2012) 415–420.

[28]. D.S. Afanasev, O.A. Yakovina, N.I. Kuznetsova, A.S. Lisitsyn, Catal. Commun. 22 (2012) 43–47.

[29]. A. Sandoval, A. Aguilar, C. Louis, A. Traverse, R. Zanella, J. Catal. 281 (2011) 40–49.

[30]. X. Zhang, Zh. Qu, X. Li, M. Wen, X. Quan, D. Ma, J. Wu, Sep. Purif. Technol. 72 (2010) 395–400.

[31]. A. Biabani-Ravandi, M. Rezaei, Z. Fattah, Chem. Eng. J. 219 (2013) 124–130.

[32]. S.H. Taylor, C. Rhodes, Catal. Today 114 (2006) 357–361.

[33]. M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. 16 (1987) 405–408.

[34]. M. Haruta, Stud. Surf. Sci. Catal. 110 (1997) 123–134.

[35]. M. Date, M. Okumura, S. Tsubota, M. Haruta, Angew. Chem. Int. Edn Engl. 43 (2004) 2129–2132.

[36]. M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.G. Genet, B. Delmon, J. Catal. 144 (1) (1993) 175–192.

[37]. H.Y. Kim, H.M. Lee, G. Henkelman, J. Am. Chem. Soc. 134 (2012) 1560−1570.

[38]. M. Haruta, M. Date, Appl. Catal. A: Gen. 222 (2001) 427–437.

[39]. M. Haruta, Catal. Today 36 (1997) 153–156.

[40]. M.R. Benjaram, T. Gode, L. Katta. Chin. J. Catal. 32 (2011) 800–806.

[41]. Q.L. Li, Y.H. Zhang, G.X. Chen, J.Q. Fan, H. Q. Lan, Y.Q. Yang, J. Catal. 273 (2010) 167–176.

[42]. I. Dobrosz-Gómez, I. Kocemba, J.M. Rynkowski, Appl. Catal. B 83 (2008) 240–255.

[43]. H. Masatake, Catalysis Surveys of Japan 1 (1997) 61–73.

[44]. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115 (1989) 301–309.

[45]. H. Falsig, B. Hvolbaek, I.S. Kristensen, T. Jiang, T. Bligaard, C.H. Christensen, J.K. Norskov, Angew. Chem., Int. Ed. 47 (2008) 4835–4839.

[46]. H. Hakkinen, W. Abbet, A. Sanchez, U. Heiz, U. Landman, Angew. Chem., Int. Ed. 42 (2003) 1297–1300.

[47]. A. Roldan, S. Gonzalez, J.M. Ricart, F. Illas, ChemPhysChem. 10 (2009) 348–351.

[48]. B. Yoon, P. Koskinen, B. Huber, O. Kostko, B. von Issendorff, H. Hakkinen, M. Moseler, U. Landman, ChemPhysChem 8 (2007) 157–161.

[49]. N. Lopez, J.K. Norskov, J. Am. Chem. Soc. 124 (2002) 11262–11263.

[50]. I.N. Remediakis, N. Lopez, J.K. Norskov, Angew. Chem., Int. Ed. 44 (2005) 1824–1826.

[51]. B. Yoon, H. Hakkinen, U. Landman, A.S. Worz, J.M. Antonietti, S. Abbet, K. Judai, U. Heiz, Science 307 (2005) 403–407.

[52]. Z.P. Liu, X.Q. Gong, J. Kohanoff, C. Sanchez, P. Hu, Phys. Rev. Lett. 91: 266102 (2003).

[53]. L.M. Molina, B. Hammer, J. Chem. Phys. 123: 161104 (2005).

[54]. L.M. Molina, M.D. Rasmussen, B. Hammer, J. Chem. Phys. 120: 7673 (2004).

[55]. J.A. Rodriguez, J. Evans, J. Graciani, J.B. Park, P. Liu, J. Hrbek, J.F. Sanz, J. Phys. Chem. 113: 7364 (2009).

[56]. S. Tsubota, D.A.H. Cunningham, Y. Bando and M. Haruta, Preparation of Catalysts VI, Elsevier, Amsterdam, 1995, pp. 227–235.

[57]. G.C. Bond, D.T. Thompson, Gold Bull. 33 (2000) 41–50.

[58]. M. Haruta, CATTECH 6 (2002) 102–115.

[59]. M. Haruta, S. Tsubota, in: A. Wieckowski, E.R. Savinova, C.G. Constantinos (Eds.), Catalysis and Electrocatalysis at Nanoparticle Surface, Marcel Dekker, New York, 2003, p. 645.

[60]. M.M. Schubert, S. Hackenberg, A.C. van Veen, M. Muhler, V. Plzak, R.J. Behm, J. Catal. 197 (2001) 113–122.

[61]. A.I. Kozlov, A.P. Kozlova, H. Liu, Y. Iwasawa, Appl. Catal. A: Gen. 182 (1999) 9–28.

[62]. M. Okumura, S. Tsubota, M. Haruta, J. Mol. Catal. A: Chem. 199 (1-2) (2003) 73–84.

[63]. Z.P. Hao, L. An, H. Wang, Sci. Chin. (Ser. B) 44 (2001) 596–605.

[64]. B.L. Moroz, P.A. Pyrjaev, V.I. Zaikovskii, V.I. Bukhtiyarov, Catal. Today 144 (2009) 292–305.

[65]. D. Wang, Z. Hao, D. Cheng, X. Shi, C. Hu, J. Mol. Catal. A: Chem. 200 (2003) 229–238.

[66]. F. Boccuzzi, A. Chlorino, S. Tsubota, M. Haruta, J. Phys. Chem. 100 (1996) 3625–3631.

[67]. B. Nkosi, N.J. Coville, G.J. Hutchings, M.D. Adams, J. Friedl, F.E. Wagner, J. Catal. 128 (1991) 366–377.

[68]. N.A. Hodge, C.J. Kiely, R. Whyman, M.R.H. Siddiqui, G.J. Hutchings, Q.A. Pankhurst, F.E. Wagner, R.R. Rajaram, S.E. Golunski, Catal. Today 72 (2002) 133–144.

[69]. G.J. Hutchings, M.S. Hall, A.F. Carley, P. Landon, B.E. Solsona, C.J. Kiely, A. Herzing, M. Makkee, J.A. Moulijn, A. Overweg, J.C. Fierro-Gonzalez, J. Guzamn, B.C. Gates, J. Catal. 242 (2006) 71–81.

[70]. M. Khoudiakov, M.C. Gupta, S. Deevi, Nano¬technology 15 (2004) 987.

[71]. G.J. Hutchings, Catal. Today 100 (2005) 55–61.

[72]. S. Al-Sayari, A.F. Carley, S.H. Taylor, G.J. Hutchings, Top. Catal. 44 (2007) 123–128.

[73]. M. Khoudiakov, M.C. Gupta, S. Deevi, Appl. Catal. A 291 (2005) 151–161.

[74]. P. Landon, J. Ferguson, B.E. Solsona, T. Garcia, A.F. Carley, A.A. Herzing, C.J. Kiely, S.E. Golunski, G.J. Hutchings, Chem. Commun. 27 (2005) 3385–3387.

[75]. L. Ruihui, Z. Cunman, M. Jianxin, Journal Of Rare Earths 28 (3) (2010) 376–382.

[76]. E. Auer, A. Freund, J. Pietsch, T. Tacke, Appl. Catal. A 173 (1998) 259–271.

[77]. C. Bianchi, F. Porta, L. Prati, M. Rossi, Top. Catal. 13 (2000) 231–236.

[78]. L. Prati, G. Martra, Gold Bull. 32 (1999) 96–101.

[79]. D.A. Bulushev, I. Yuranov, E.I. Suvorova, P.A. Buffat, and L. Kiwi-Minsker, J. Catal. 224 (2004) 8–17.

[80]. S. Carrettin, P. Concepcio´ n, A. Corma, J.M. Lo´ pez Nieto, V.F. Puntes, Angew. Chem. Int. Ed. 43 (2004) 2538–2540.

[81]. N. Russo, D. Fino, G. Saracco, V. Specchia, Catal. Today 117 (2006) 214–219.

[82]. F. Arena, P. Famulari, G. Trunfio, G. Bonura, F. Frusteri, L. Spadaro, Appl. Catal. B: Environ. 66 (2006) 81–91.

[83]. L.F. Liotta, G. Di Carlo, A. Longo, G. Pantaleo, A.M. Venezia, Catal. Today 139 (2008) 174–179.

[84]. U.R. Pillai, S. Deevi, Appl. Catal. A: Gen. 299 (2006) 266–273.

[85]. L.-H. Chang, N. Sasirekha, B. Rajesh, Y.-W. Chen, Sep. Purif. Technol. 58 (2007) 211–218.

[86]. A. Wolf, F. Schuth, Appl. Catal. A: Gen. 226 (2002) 1–13.

[87]. P. Konova, A. Naydenov, T. Tabakova, D. Mehandjiev, Catal. Commun. 5 (2004) 537–542.

[88]. X. Zhang, H. Wang, B.-Q. Xu, J. Phys. Chem. B 109 (2005) 9678–9683.

[89]. S.-P. Wang, T.-Y. Zhang, X.-Y. Wang, S.-M. Zhang, S.-R. Wang, W.-P. Huang, S.-H. Wu, J. Mol. Catal. A: Chem. 272 (2007) 45–52.

[90]. I. Dobrosz-Go´mez, I. Kocemba, J.M. Rynkowski, Appl. Catal. B: Environ. 88 (2009) 83–97.

[91]. T.-J. Huang, D.-H. Tsai, Catal. Lett. 87 (2003) 173–178.

[92]. T.-J. Huang, T.-C. Yu, Appl. Catal. 71 (2) (1991) 275–282.

[93]. J.T. Kummer, Prog. Energy Combust. Sci. 6 (1980) 177–199.

[94]. B. Skarman, T. Nakayama, D. Grandjean, R.E. Benfield, E. Olsson, K. Niihara, L.R. Wallenberg, Chem. Mater. 14 (2002) 3686–3699.

[95]. B. Skarman, D. Grandjean, R. E. Benfield, A. Hinz, A. Anderson, L.R. Wallenberg, J. Catal. 211 (2002) 119–133.

[96]. W. Liu, M.F. Stephanopoulos, Chem. Eng. J. 64 (2) (1996) 283–294.

[97]. A. Tschope, J.Y. Ying, Y.-M. Chiang, Mater. Sci. Eng. A 204 (1995) 267–271.

[98]. G. Avgouropoulos, T. Ioannides, Appl. Catal. A: Gen. 244 (2003) 155–167.

[99]. L.K. Kundakovic, M.F. Stephanopoulos, Appl. Catal. A: Gen. 171 (1998) 13–29.

[100]. R. Bechara, G. Wrobel, C.F. Aissi, M. Guelton, J.P. Bonnelle, A. Abou-Kais, Chem. Mater. 2 (1990) 518–522.

[101]. X.-Y. Jiang, R.-X. Zhou, P. Pan, B. Zhu, X.-X. Yuan, X.-M. Zheng, Appl. Catal. A: Gen. 150 (1997) 131–141.

[102]. U.R. Pillai, S. Deevi, Appl. Catal. B: Environ. 64 (2006) 146–151.

[103]. F.C. Buciuman, F. Patcas, T. Hahn, Chem. Eng. Process. 38 (1999) 563–569.

[104]. D.M. Whittle, A.A. Mirzaei, J.S.J. Hargreaves, R.W. Joyner, C.J. Kiely, S.H. Taylor, G.J. Hutchings, Phys. Chem. 4 (2002) 5915–5920.

[105]. S.H. Taylor, G.J. Hutchings, A.A. Mirzaei, Chem. Commun. (1999) 1373–1374.

[106]. J. Agrell, M. Boutonnet, I. Melia´n-Cabrera, J.L.G. Fierro, Appl. Catal. A: Gen. 253 (2003) 201–211.

[107]. X. Xi, S. Ma, J.-F. Chen, Y. Zhang, J. Environ¬mental Chem. Engineering 2 (2014) 1011–1017.

[108]. D.R. Merrill, C.C. Scalione, J. Am. Chem. Soc. 43 (1921) 1982–2002.

[109]. C. Yoon, D.L. Cocke, J. Catal. 113 (1988) 267– 280.

[110]. A.A. Mirzaei, H.R. Shaterian, R.W. Joyner, M. Stockenhuber, S.H. Taylor, G.J. Hutchings, Catal. Commun. 4 (2003) 17–20.

[111]. A.A. Mirzaei, H.R. Shaterian, M. Kaykhaii, Appl. Surf. Sci. 239 (2005) 246–254.

[112]. C. Jonesa, K.J. Colea, S.H. Taylor, M.J. Crudaceb, G.J. Hutchings,J. Mol. Catal. A: Chem. 305 (2009) 121–124.

[113]. M. Li, D.-H. Wang, X.-C. Shi, Z.-T. Zhang, T.-X. Dong, Sep. Purif. Technol. 57 (2007) 147–151.

[114]. T. Cheng, Z.Y. Fang, Q.X. Hu, K.D. Han, X.Z. Yang, Y.J. Zhang, Catal. Commun. 8 (2007) 1167–1171.

[115]. H.G. El-Shobaky, M.M. Mokhtar, Appl. Surf. Sci. 253 (2007) 9407–9413.

[116]. H.G. El-Shobaky, Y.M. Fahmy, Mater. Res. Bull. 41 (2006) 1701–1713.

[117]. W.M. Shaheena, A.A. Ali, Int. J. Inorg. Mater. 3 (2001) 1073–1081.

[118]. E. Boellaard, F.Th. van de Scheur, A.M. van de Kraan, J.W. Geus, Appl. Catal. A: Gen. 171 (1998) 333–350.

[119]. J.-L. Cao, Y. Wang, X.-L. Yu, S.-R. Wang, S.- H. Wu, Z.-Y. Yuan, Appl. Catal. B: Environ. 79 (2008) 26–34.

[120]. S.H. Taylor, G.J. Hutchings, A.A. Mirzaei, Catal. Today 84 (2003) 113–119.

[121]. U.R. Pillai, S. Deevi, Appl. Catal. B: Environ. 65 (2006) 110–117.

[122]. G. Marbán, A.B. Fuertes, Appl. Catal. B: Environ. 57 (2005) 43–53.

[123]. D.H. Kim, J.E. Cha, Catal. Lett. 86 (2003) 107–112.

[124]. X.L. Tang, B.C. Zhang, Y. Li, Y.D. Xu, Q. Xin, W.J. Shen, Catal. Today, 93–95 (2004) 191–198.

[125]. M.-F. Luo, X.-X. Yuan, X.-M. Zheng, Y.-J. Zhong, Appl. Catal. A: Gen.162(1997) 121–131.

[126]. W. Liu, M. Flytzani-Stephanopoulos, J. Catal. 153 (1995) 304–316.

[127]. Y. Liu, H.-L. Sun, Q.-S. Liu, H.-F. Jin, Chin. J. Catal. 22 (2001) 453–456.

[128]. P.G. Harrison, I.K. Ball, W. Azelee, W. Daniell, D. Goldfarb, Chem. Mater. 12 (2000) 3715–3725.

[129]. S. Bjorn, G. Didier, E.B. Robert, H. Andreas, A. Arne, L.R. Wallenberg, J. Catal. 211 (2002) 119–133.

[130]. G. Avgouropoulos, T. Ioannides, C. Papadopou¬lou, J. Batista, S. Hocevar, H.K. Matralis, Catal. Today 75 (2002) 157–167.

[131]. T. Hu, J. Yang, J. Zhao, D. Wang, H. Song, L. Chou, Chin. J. Catal. 28 (10) (2007) 844–846.

[132]. X.-C. Zheng, S.-H. Wu, S.-P. Wang, S.-R. Wang, S.-M. Zhang, W.-P. Huang, Appl. Catal. A: Gen. 283 (2005) 217–223.

[133]. Z.-Q. Zou, M. Meng, L.-H. Guo, Y.-Q. Zha, J. Hazard. Mater.163 (2009) 835–842.

[134]. G. Chen, Q. Li, Y. Wei, W. Fang, Y. Yang, Chin. J. Catal. 34 (2013) 322–329.

[135]. J. Jansson, J. Catal. 194 (2000) 55–60.

[136]. J. Jansson, A.E.C. Palmqvist, E. Fridell, M. Skoglundh, L.O. Sterlund, P. Thormahlen, V. Langer, J. Catal. 211 (2002) 387–397.

[137]. H.K. Lin, C.B. Wang, H.C. Chiu, S.H. Chien, Catal. Lett. 86 (2003) 63–68.

[138]. H.K. Lin, H.C. Chiu, H.C. Tsai, S.H. Chien, C.B. Wang, Catal. Lett. 88 (2003) 169–174.

[139]. C.B. Wang, C.W. Tang, S.J. Gau, S.H. Chien, Catal. Lett. 101 (2005) 59–63.

[140]. P. Broqvist, I. Panas, H. Person, J. Catal. 210 (2002) 198–206.

[141]. B.A. Sazonov, V.V. Popovskii, G.K. Boreskov, Kinet. Catal. 9 (1968) 255.

[142]. M. Haneda, Y. Kintaichi, N. Bion, H. Hamada, Appl. Catal. B: Environ. 46 (2003) 473–482.

[143]. D.S. Lafyatis, G.P. Ansell, S.C. Bennett, J.C. Frost, P.J. Millington, R.R. Rajaram, A.P. Walk¬er, T.H. Ballinger, Appl. Catal. B: Environ. 18 (1998) 123–125.

[144]. Y.Y. Yao, J. Catal. 33 (1974) 108–122.

[145]. D. Perti, R. L. Kabel, AIChE J. 31 (1985) 1420–1440.

[146]. D.A.H. Cunningham, T. Kobayashi, N. Kamijo, M. Haruta, Catal. Lett. 25 (1994) 257–264.

[147]. F. Grillo, M.M. Natile, A. Glisenti, Appl. Catal. B: Environ. 48 (2004) 267–274.

[148]. X. Xie, Y. Li, Z.-Q. Liu, M. Haruta, W. Shen, Nature 458 (2009) 746–749.

[149]. C. Liu, Q. Liu, L. Bai, A. Dong, G. Liu, S. Wen, J. Mol. Catal. A: Chem. 370 (2013) 1–6.

[150]. M.J. Pollard, B.A. Weinstock, T.E. Bitterwolf, P.R. Griffiths, A.P. Newbery, J.B. Paine, J. Catal. 254 (2008) 218–225.

[151]. P. Thormählen, M. Skoglundh, E. Fridell, B. An¬dersson, J. Catal. 188 (1999) 300–310.

[152]. C.-W. Tang, C.-C. Kuo, M.-C. Kuo,C.-B.Wang, S.-H. Chien, Appl. Catal. A: Gen. 309 (2006) 37–43.

[153]. J.C.W. Frazer, C.G. Albert, J. Phys. Chem. 40 (1936) 101–112.

[154]. M. Shelef, K. Otto, H. Gandhi, J. Catal. 12 (1968) 361–375.

[155]. C.A. Leech, L.E. Campbell, Adv. Chem. Ser. 143 (1975) 161–171.

[156]. S.A. Solovev, S.N. Orlik, Kinet. Catal. 50 (5) (2009) 705–714.

[157]. S. Stegenga, R.van Soest, F. Kapteijn, J.A. Mou¬lijn, Appl. Catal. B: Environ. 2 (1993) 257–275.

[158]. K.S.R.C. Murthy, J. Ghose, J. Catal. 147 (1994): 171–176.

[159]. R. Prasad, P. Singh, Cat. Rev. - Sci. Eng. 54 (2) (2012) 224–279.

[160]. G. Xanthopoulou, G. Vekinis, Adv. Environ. Res. 5 (2001)117–128.

[161]. H.I. Hsiang, F.S. Yen, Ceram. Int, 29 (1) (2003) 1-6.

[162]. E. Manova, D. Paneva, B. Kunev, C. Estournes, E. Riviere, K. Tenchev, A. L´eaustic, I. Mitov. J. Alloy Compd. 485 (2009) 356–361.

[163]. V. Pillai, D.O. Shah. J. Magn. Magn. Mater. 163 (1996) 243–248.

[164]. N. Moumen, M. P. Pileni, Chem. Mater. 8 (1996) 1128–1134.

[165]. J.J. Melchiore US Patent 3 055 839. 1962.

[166]. F. Bensebaa, F. Zavaliche, P. L’Ecuyer, R. W. Cochrane, T. Veres, J. Colloid. Interface Sci. 277 (2004) 104–110.

[167]. L.J. Cote, A.S. Teja, A.P. Wilkinson, Z.J. Zhang. Fluid Phase Equilib. 210 (2003) 307–317.

[168]. T. Meron, Y. Rosenberg, Y. Lereah, G. Markov¬ich J. Magn. Magn. Mater. 292 (2005) 11–16.

[169]. Y.I.D. Kim, C.S. Lee, Physica B 337 (2003) 42–51.

[170]. A. Biabani-Ravandi, M. Rezaei, Chem. Eng. J., 184 (1) (2012) 141–146.

[171]. E.Yu. Liberman, B.S. Kleusov, A.I. Mihaili¬chenko, T.V. Konkova, A.V. Horoshilov, Kataliz v promyshlennosti [Catalysis in the industry] 3 (2012) 44–49 (in Russian).

[172]. A. Martinez-Arias, M. Fernandez-Garcia, O. Galvez, J.M. Coronado, J.A. Anderson, J.C. Conesa, J. Soria, G. Munuera, J. Catal. 195 (2000) 207–216.

[173]. A. Martinez-Arias, R. Cataluna, J.C. Conesa, J. Soria, J. Phys. Chem. B 102 (1998) 809–817.

[174]. C. Serre, F. Garin, G. Belot, G. Maire, J. Catal. 141 (1993) 1–9.

[175]. S.H. Oh, J. Catal. 124 (1990) 477–487.

[176]. H.C. Yao, Y.F.Y. Yao, J. Catal. 86 (1984) 254–265.

[177]. C.W. Tang, C.C. Kuo, M.C. Kuo, C.B. Wang, S.H. Chien, Appl. Catal. A: Gen. 309 (1) (2006) 37–43.

[178]. A. Trovarelli, Catal. Rev. Sci. Eng. 38 (1996) 439–520.

[179]. J.C. Summers, S.A. Ausen, J. Catal. 58 (1979) 131–143.

[180]. K. Tikhomirov, O. Krocher, M. Elsener, A. Wokaun, Appl. Catal. B: Environ. 64 (2006) 72–78.

[181]. X. Liu, J. Lu, K. Qian, W. Huang, M. Luo, J. Rare Earths 27 (2009) 418–424.

[182]. X. Wu, S. Liu, D. Weng, F. Lin, Catal. Commun. 12 (2011) 345–348.

[183]. S. Bose, Y. Wu, J. Am. Ceram. Soc. 88 (2005) 1999–2002.

[184]. A. Martı´nez-Arias, M. Ferna´ndez-Garcı´a, L.N. Salamanca, R.X. Valenzuela, J.C. Conesa, J. Soria, J. Phys. Chem. B 104 (2000) 4038– 4046.

[185]. K.M.S. Khalil, J. Colloid Interface Sci. 307 (2007) 172–180.

[186]. D. Terribile, A. Trovarelli, J. Llorca, C. deLeitenburg, G. Dolcetti, Catal. Today 43 (1998) 79–88.

[187]. D.N. Nhiema, L.M. Daia, N.D. Van, D.T. Lim, Ceram. Int. 39 (2013) 3381–3385.

Downloads

Published

2015-01-20

How to Cite

Xanthopoulou, G. G., Novikov, A. V., Knysh, Y. A., & Amosov, A. P. (2015). Nanocatalysts for Low-Temperature Oxidation of CO: Review. Eurasian Chemico-Technological Journal, 17(1), 17–31. https://doi.org/10.18321/ectj190

Issue

Section

Articles