Effect of Mechanical Activation on Ti3AlC2 Max Phase Formation under Self-Propagating High-Temperature Synthesis

Authors

  • A. Yu. Potanin National University of Science and Technology “MISIS”, SHS Research & Education Center MISIS-ISMAN, Leninsky prospect, 4, Moscow, 119049, Russia
  • P. A. Loginov National University of Science and Technology “MISIS”, SHS Research & Education Center MISIS-ISMAN, Leninsky prospect, 4, Moscow, 119049, Russia
  • E. A. Levashov National University of Science and Technology “MISIS”, SHS Research & Education Center MISIS-ISMAN, Leninsky prospect, 4, Moscow, 119049, Russia
  • Yu. S. Pogozhev National University of Science and Technology “MISIS”, SHS Research & Education Center MISIS-ISMAN, Leninsky prospect, 4, Moscow, 119049, Russia
  • E. I. Patsera National University of Science and Technology “MISIS”, SHS Research & Education Center MISIS-ISMAN, Leninsky prospect, 4, Moscow, 119049, Russia
  • N. A. Kochetov Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences, str. Academica Osipyana, 8, Chernogolovka, Moscow Region, 142432 Russia

DOI:

https://doi.org/10.18321/ectj249

Keywords:

SHS, mechanical activation, mechanosynthesis, Ti3AlC2, combustion rate

Abstract

In this study, we have investigated the effect of various mechanical activation (MA) modes on phase and structure formation in powder mixtures made up to produce Ti3AlC2 MAX phase. The optimal MA duration has been established which results in the maximum heat release under SHS due to accumulation of structural defects leading to the growth of internal energy. The effect of MA on the character and kinetics of combustion front propagation has been investigated. It was shown that following pretreatment of a powder mixture in a planetary ball mill, the combustion mode changes from stationary to a pulsating combustion and, consequently, the combustion rate decreases. The burning-out of the sample is partial and with
interruptions (depressions). Force SHS-pressing technology was used for obtaining of compacted samples with homogeneous structure based on Ti3AlC2.

References

[1]. N.V. Tzenov, M.W. Barsoum. J. Am. Ceram. Soc. 83 (2000) 825–832.

[2]. Chunfeng Hu, Haibin Zhang, Fangzhi Li, Qing Huang, Yiwang Bao. Int. J. Refract. Met. Hard Mater. 36 (2013) 300–312.

[3]. E.A. Levashov, Yu.S. Pogozhev, D.V. Shtansky, M.I. Petrzhik. Russian Journal of Non-Ferrous Metals 50 (2009) 151–160.

[4]. W.K. Pang, I.M. Low, Understanding and improving the thermal stability of layered ternary carbides in ceramic matrix composites in book Advances in Ceramic Matrix Composites: I.M. Low (Eds.), Woodhead Publishing Limited, Philadelphia, USA, 2014, pp. 340–368.

[5]. С.В. Spencer, Fiber-Reinforced Ti3SiC2 and Ti2AlC MAX Phase Composites. A Thesis of Master of Science in Materials Science and Engineering. Drexel University. 2010. 92 р.

[6]. X.H. Wang, Y.C. Zhou, J. Mater. Sci. Technol. 26 (2010) 385–416.

[7]. M.A. Pietzka, J.C. Schuster. J. Phase Equilib. 15 (1994) 392–400.

[8]. M.W. Barsoum, D. Brodkin, T. El-Raghy. Scripta Materialia 36 (1997) 535–541.

[9]. Y. Khoptiar, I. Gotman, E.Y. Gutmanas. J. Am. Ceram. Soc. 88 (2005) 28–33.

[10]. Aiguo Zhou, Chang-An Wang, Zhenbin Ge, Lifeng Wu. J. Mater. Sci. Lett. 20 (2001) 1971–1973.

[11]. Shinobu Hashimoto, Masaru Takeuchi, Koji Inoue, Sawao Honda, Hideo Awaji, Koichiro Fukuda, Shaowei Zhang. Mater. Lett. 62 (2008) 1480–1483.

[12]. W.B. Zhou, B.C. Mei, J.Q. Zhu, X.L. Hong. Mater. Lett. 59 (2005) 131–134.

[13]. M.W. Barsoum, M. Ali, T. El-Raghy. Metall. Mater. Trans. A 31 (2000) 1857–1865.

[14]. Zhenbin Ge, Kexin Chen, Junming Guo, Heping Zhou, José M. F. Ferreira. J. Eur. Ceram. Soc. 23 (2003) 567–574.

[15]. Shinobu Hashimoto, Noriko Nishina, Kiyoshi Hirao, You Zhou, Hideki Hyuga, Sawao Honda, Yuji Iwamoto. Mater. Res. Bull. 47 (2012) 1164–1168.

[16]. A.F. Fedotov, A.P. Amosov, E.I. Latuhin, A.A. Ermoshkin, D.M. Davydov. Izvestija Samarskogo nauchnogo centra Rossijskoj akademii nauk [Proceedings of the Samara Scientific Center of the Russian Academy of Sciences] 16 (2014) 50–55 (in Russian).

[17]. D.V. Shtansky, F.V. Kiryukhantsev-Korneev, A.N. Sheveyko, B.N. Mavrin, E.A. Levashov, C. Rojas, A. Fernandez. Surf. Coat. Technol. 203 (2009) 3595–3609.

[18]. E.A. Levashov, A.E. Kudryashov, Yu.S. Pogozhev, P.V. Vakaev, E.I. Zamulaeva, T.A. Sviridova. Russian Journal of Non-Ferrous Metals 48 (2007) 362–372.

[19]. M. Yoshida, Ya. Hoshiyama, J. Ommyoji, A. Yamaguchi. Mater. Sci. Eng., B 173 (2010) 126–129.

[20]. Shi-Bo Li, Hong-Xiang Zhai, Guo-Ping Bei, Yang Zhou, Zhi-Li Zhang. Ceram. Int. 33 (2007)169–173.

[21]. A. Hendaoui, M. Andasmas, A. Amara, A. Benaldjia, P. Langlois, D. Vrel. International Journal of Self-Propagating High-Temperature Synthesis 17 (2008) 129–135.

[22]. A. Hendaoui, D. Vrel, A. Amara, P. Langlois, M. Andasmas, M. Guerioune. J. Eur. Ceram. Soc. 30 (2010) 1049–1057.

[23]. D.P. Riley, E.H. Kisi, D. Phelan. J. Eur. Ceram. Soc. 26 (2006) 1051–1058.

[24]. E.A. Levashov, V.V. Kurbatkina, E.I. Patsera, Yu.S. Pogozhev, S.I. Rupasov, A.S. Rogachev. Russian Journal of Non-Ferrous Metals 51 (2010) 403–433.

[25]. K.N. Egorychev, V.V. Kurbatkina, E.A. Levashov. Izvestija VUZov. Cvetnaja metallurgija [Proceedings of the universities. Non-ferrous metallurgy] 6 (1996) 49–52 (in Russian).

[26]. V.V. Kurbatkina, E.A. Levashov, Mechanoactivation of SHS in book combustion of heterogeneous systems: fundamentals and applications for materials synthesis, in: A.S. Mukasyan, K.S. Martirosyan (Eds.), Trans-world Research Network, Kerala, India, 2007, pp. 131– 141.

[27]. N.Z. Lyakhov, T.L. Talako, T.F. Grigorieva: Effect of mechanical activation on the processes of phase- and structure formation during self-propagating high-temperature synthesis. Novosibirsk: Parallel, 2008 (in Russian).

[28]. V. Gauthier, C. Josse, F. Bernard, E. Gaffet, J.P. Larpin. Mater. Sci. Eng., A 265 (1999) 117–128.

[29]. V. Gauthier, F. Bernard, E. Gaffet, C. Josse, J.P. Larpin. Mater. Sci. Eng., A 272 (1999) 334–341.

[30]. L.L. Ye, M.X. Quan. Nanostruct. Mater. 5 (1995) 25–31.

[31]. I. Radja, H. Djelad, E. Morallon, A. Benyoucef. Synth. Met.202 (2015) 25–32.

[32]. E.A. Levashov, V.V. Kurbatkina, K.V. Kolesnichenko. Izvestija VUZov. Cvetnaja metallurgija [Proceedings of the universities. Non-ferrous metallurgy] 6 (2000) 61–67 (in Russian).

[33]. F. Maglia, U. Anselmi-Tamburini, G. Cocco, M.Monagheddu, N. Bertolino, Z.A. Munir. J. Mater. Res. 16 (2001) 1074–1082.

[34]. A.S. Rogachev, J.-C. Gachon, H.E. Grigoryan, D. Vrel, J.C. Schuster, N.V. Sachkova. Journal of materials science 40 (2005) 2689–2691.

[35]. V.K. Smolyakov. Combustion of Mechanically Activated Heterogeneous Systems. Combustion, Explosion and Shock Waves 41 (2005) 319–325.

[36]. L.V. Zueva, A.I. Gusev. Phys. Solid State. 41 (1999) 1032–1038.

Downloads

Published

2015-07-20

How to Cite

Potanin, A. Y., Loginov, P. A., Levashov, E. A., Pogozhev, Y. S., Patsera, E. I., & Kochetov, N. A. (2015). Effect of Mechanical Activation on Ti3AlC2 Max Phase Formation under Self-Propagating High-Temperature Synthesis. Eurasian Chemico-Technological Journal, 17(3), 233–242. https://doi.org/10.18321/ectj249

Issue

Section

Articles