Highly Porous Carbon Materials Filled with Nickel Hydroxide Nanoparticles; Synthesis, Study, Application in Electrochemistry

  • Yu. A. Zakharov Institute of Coal Chemistry and Materials Science SB RAS, Russia, 650000 Kemerovo
  • A. N. Voropay Institute of Coal Chemistry and Materials Science SB RAS, Russia, 650000 Kemerovo
  • N. M. Fedorova Kemerovo State University, 650043 Kemerovo, Russia
  • V. M. Pugachev Kemerovo State University, 650043 Kemerovo, Russia
  • A. V. Puzynin Institute of Coal Chemistry and Materials Science SB RAS, Russia, 650000 Kemerovo
  • Ch. N. Barnakov Institute of Coal Chemistry and Materials Science SB RAS, Russia, 650000 Kemerovo
  • Z. R. Ismagilov Institute of Coal Chemistry and Materials Science SB RAS, Russia, 650000 Kemerovo
  • T. S. Manina Center for collective use of Kemerovo Scientific Center SB RAS, 650000 Kemerovo, Russia
Keywords: Nickel hydroxide, porous carbon, composite, supercapacitor

Abstract

Nickel hydroxide was deposited on the surface of the porous carbon to obtain a cathode material for  supercapacitors. This work is the first part of the study of Ni(OH)2/С composite, which considers the conditions of its synthesis using two types of porous carbon matrices with a highly developed specific surface area (1000–3000 m2/g) and two types of precursors (NiCl2*6H2O and Ni(N3)2). The morphology of the systems, in particular the shape and size characteristics of the hydroxide filler particles, was examined using the scanning electron microscopy, X-ray diffraction, and nitrogen adsorption-desorption at 77 K. The measurements of capacity of the Ni(OH)2/С-electrodes were made in 6 M KOH using an asymmetric two-electrode cell (a porous carbon material with known electrode characteristics was employed as the counter electrode). The capacity was shown to decrease by 22–56% with increasing the scanning rate from 10 to 80 mV/s. A maximum capacity of the composite was obtained at a scanning rate of 10 mV/s was 346 F/g.

References

[1]. L. Cao, F. Xu, Y.Y. Liang, H.L. Li, Adv. Mater. 16 (2004) 1853–1857.

[2]. D.D. Zhao, W.J. Zhou, H.L. Li, Chem. Mater. 19 (2007) 3882–3891.

[3]. A. Burke, J. Power Sources 91 (2000) 37–50.

[4]. Mustafa Aghazadeh, Mehdi Ghaemi, Behrouz Sabour, Somayeh Dalvand, J. Solid State Electrochem. 18 (2014) 1569–1584.

[5]. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41 (2012) 797–828.

[6]. J.L. Zhang, H.D. Liu, L.H. Huang, S.Z. Tan, W.J. Mai, X. Cai, J. Solid State Electrochem. 19 (2015) 229–239.

[7]. Duanguang Yang, Fan Wang, Jing Yan, Yong Gao, Huaming Li, J. Nanopart. Res. 15 (2013) 1762–1775.

[8]. Junyi Ji, Li Li Zhang, Hengxing Ji, Yang Li, Xin Zhao, Xin Bai, Xiaobin Fan, Fengbao Zhang, and Rodney S. Ruoff, ACS Nano. 7 (2013) 6237–6243.

[9]. Guang-Wu Yang, Cai-Ling Xu and Hu-Lin Li, Chem. Commun. 48 (2008) 6537–6539.

[10]. Wen-Jia Zhou, Mao-Wen Xu, Dan-Dan Zhao, Cai-Ling Xu, Hu-Lin Li, Microporous and Mesoporous Materials 117 (2009) 55–60.

[11]. H.L. Wang, J.T. Robinson, G. Diankov, H.J. Dai, J. Am. Chem. Soc. 132 (2010) 3270–3271.

[12]. Ye.M. Tayts, I.A. Andreyeva. Methods for analysis and testing of coal. Nedra, Moscow 1983, р. 300.

[13]. T.S. Manina, N.I. Fedorova, S.A. Semenova, Z.R. Ismagilov. Coke and Chemistry 55 (2012) 429–431.

[14]. Ch.N. Barnakov, A.P. Kozlov, S.K. Seit-Ablaeva, V.B. Fenelonov, S.V. Cherepanova, Z.R. Ismagilov,
V.N. Parmon. Petroleum Chemistry 44 (2004) 403–406.

[15]. B.K. Vaynshteyna, Modern Crystallography. Science. Moscow, Vol. 1, 1979, р 384.

[16]. S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4 (2010) 2822–2830.

[17]. U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, Oh Shim Joo, J. Power Sources 188 (2009) 338–342.

[18]. A.S. Vyacheslavov, E.A. Pomerantseva, Measurement of surface area and porosity by capillary condensation of nitrogen, Moscow, 2006, p 55.

[19]. Yu.A. Zakharova, Z.R. Ismagilova, V.M. Pugachev, A.N. Voropai, R.P. Kolmykov, V.G. Dodonov, T.S. Manina, Ch.N. Barnakov, A.V. Samarov, Inorg. Mater. 4 (2015) 405–411.
Published
2015-07-20
How to Cite
[1]
Y. Zakharov, “Highly Porous Carbon Materials Filled with Nickel Hydroxide Nanoparticles; Synthesis, Study, Application in Electrochemistry”, Eurasian Chem. Tech. J., vol. 17, no. 3, pp. 187-191, Jul. 2015.
Section
Articles