Investigation of Physicochemical and Electrochemical Properties of Single-Walled Carbon Nanotubes Modified with Nitrogen

  • V. V. Chesnokov Boreskov Institute of Catalysis SB RAS, Prosp. Akad. Lavrentieva 5, Novosibirsk 630090, Russia
  • A. S. Chichkan Institute of Coal Chemistry and Materials Science of Federal Research Center of Coal and Coal Chemistry SB RAS, Prosp. Sovetsky 18, Kemerovo 650000, Russia
  • A. V. Puzynin Institute of Coal Chemistry and Materials Science of Federal Research Center of Coal and Coal Chemistry SB RAS, Prosp. Sovetsky 18, Kemerovo 650000, Russia
  • D. A. Svintsitsky Boreskov Institute of Catalysis SB RAS, Prosp. Akad. Lavrentieva 5, Novosibirsk 630090, Russia
  • Z. R. Ismagilov Boreskov Institute of Catalysis SB RAS, Prosp. Akad. Lavrentieva 5, Novosibirsk 630090, Russia
  • V. N. Parmon Boreskov Institute of Catalysis SB RAS, Prosp. Akad. Lavrentieva 5, Novosibirsk 630090, Russia
Keywords: supercapacitors; carbon nanotubes; modification; nitrogen; electrochemical properties

Abstract

Composites of the type “nitrogen-containing carbon coating – single-walled carbon nanotubes” were obtained by the treatment of single-walled carbon nanotubes (SWCNT) in a gaseous 40%NH3-1%C2H2-C2H4 mixture at temperatures 600–750 °C. Single-walled carbon nanotubes etched in aqua regia (SWCNTet) and doped with nitrogen (N-SWCNT) were studied by XPS, electron microscopy and IR spectroscopy. Various oxygen-containing functional groups were found to reside on the surface of initial SWCNTet. Upon treatment of SWCNTet in 40%NH3-1%С2Н2-C2H4, polymerization and condensation of hydrocarbons resulted in the formation of a thin nitrogen-containing carbon coating. Specific capacitance per a weight of initial and nitrogen-doped carbon nanotubes in an aqueous electrolyte with 1 M H2SO4 was measured. Specific capacitance of carbon electrodes was found to change symbately with the content of nitrogen-containing functional groups on the SWCNT surface.

References

1. V. Khomenko, E. Raymundo-Pinero, E. Frackowiak, F. Beguin, Appl. Phys. A Mater. 82 (2006) 567–573. Crossref


2. A. Burke, J. of Power Sources 91 (1) (2000) 37–50. Crossref


3. J.R. Miller, P. Simon, Science 321 (5889) (2008) 651–652. Crossref


4. M. Sevilla, L. Yu, L. Zhao, C.O. Ania, M.-M. Titiricic, ACS Sustainable Chem. Eng 2 (2014) 1049‒1055. Crossref


5. S. Maldonado, S. Morin, K.J. Stevenson, Carbon 44 (2006) 1429‒1437. Crossref


6. V. Thirumal, A. Pandurangan, R. Jayavel, S.R. Krishnamoorthi, R. Ilangovan, Curr. Appl. Phys. 16. (2016) 816‒825. Crossref


7. R.A. Buyanov, Catalyst Coking. Nauka, Novosibirsk, 1983, p. 208 (in Russian).

8. V.V. Chesnokov, A.S. Chichkan, Int. J. Hydrogen Energ. 34 (2009) 2979‒2985. Crossref


9. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corp, Eden Prairie, Minnesota, USA, 1992.

10. G.Yu. Simenyuk, A.V. Puzynin, O.Yu. Podyacheva, A.V. Salnikov, Yu.A. Zakharov, Z.R. Ismagilov Eurasian Chemico- Technological Journal 19 (2017) 201‒208. Crossref


11. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41 (2012) 798–828. Crossref


12. R. Arrigo, M.E. Schuster, Z. Xie, Y. Yi, G. Wowsnick, L.L. Sun, K.E. Hermann, M. Friedrich, P. Kast, M. Hävecker, A. Knop- Gericke, and R. Schlögl, ACS Catal. 5 (2015) 2740–2753. Crossref


13. J. Casanovas, J.M. Ricart, J. Rubio, F. Illas, and J.M. Jiménez-Mateos, J. Am. Chem. Soc. 118 (34) (1996) 8071–8076. Crossref


14. J.A. Fern´andez, T. Morishita, M. Toyoda, M. Inagaki, F. Stoeckli, T.A. Centeno, J. Power Sources 175 (1) (2008) 675–679. Crossref


15. A. Burke, Electrochim. Acta 53 (3) (2007) 1083– 1091. Crossref
Published
2017-12-30
How to Cite
[1]
V. Chesnokov, A. Chichkan, A. Puzynin, D. Svintsitsky, Z. Ismagilov, and V. Parmon, “Investigation of Physicochemical and Electrochemical Properties of Single-Walled Carbon Nanotubes Modified with Nitrogen”, Eurasian Chem. Tech. J., vol. 19, no. 4, pp. 289-294, Dec. 2017.
Section
Articles