Nanosized Catalysts in the Process of Hydrogenating Acetylene

  • S. K. Tanirbergenova Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • N. K. Zhylybayeva Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • S. Zh. Tairabekova Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • D. A. Tugelbayeva Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • G. M. Naurzbayeva Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • G. M. Moldazhanova Institute of Combustion Problems, 050012, Bogenbay batyr str., 172, Almaty, Kazakhstan
  • B. A. Mansurov Abai Kazakh National Pedagogical University, 50010, Dostyk аve., 13, Almaty, Kazakhstan

Abstract

Hydrogenating process of the acetylene to ethylene using automated flow catalytic installation at nanoscaled catalysts Ni, Co and carriers at a pressure of 5 atm was studied. The actions of carriers and nanosized catalysts during hydrogenation reaction of acetylene to ethylene at low temperatures in the range from 50–120 °С were analyzed. With ratio of С2Н22 being equal to (1:2), at 80 °С the aluminum oxide carrier exhibits an activity, conversion of acetylene makes up 70%, when using zeolite 3A it is 63%. When the temperature rises to 120 °С, the aluminum activity is decreasing and conversion is 53%. However, zeolite exhibits its activity at high temperatures, at a temperature of 120 °С conversion of acetylene reaches to 73.5%. It is shown that with increasing of hydrogen ratio, the ethylene yield increases from 5 to 10.7% using catalyst 5% Ni/3A. In addition, in reaction of acetylene hydrogenation there are not formed waste products. For this process, the optimum reaction temperature is 80 °С, feedstock ratio (1:3) is positive, where the ethylene yield increased up to 16.7% and at catalyst to 5% Co/3A.

References

(1). C.M. Kruppe, J.D. Krooswyk, M. Trenary, ACS Catal. 7 (2017) 8042–8049. Crossref

(2). D.V. Glyzdova, N.S. Smirnova, N.N. Leont’eva, E.Yu. Gerasimov, I.P. Prosvirin, V.I. Vershinin, D.A. Shlyapin, P.G. Tsyrul’nikov. Kinet Catal. 58 (2017) 140–146. Crossref

(3). Т.N. Afanasenko, N.S. Smirnova, V.L. Temerov, N.N. Leonteva, Т.I. Gulayeva, P.G. Tsirulnikov, Kinet. Catal. 57 (2016) 493–500. Crossref

(4). V.V. Chesnokov, A.S. Chichkan, Z.R. Ismagilov, Kinet. Catal. 58 (2017) 649–654. Crossref

(5). D.V. Glasgowa, N. Smirnova, D.A. Shlyapin, P.G. Tsyrulnikov, Rossijskij himicheskij zhurnal [Russian chemical journal] 62 (2018) 89–109 (in Russian).

(6). B.Т. Burganov, H.E. Harlampidy, A.A. Jaddoa, Vestnik tehnologicheskogo universiteta [Bulletin of technological university] 18 (2015) 8‒11 (in Russian).

(7). F. Studt, F. Abild-Pedersen, T. Bligaard, R.Z. Sorensen, C.H. Christensen, J.K. Norskov, Science 320 (2008) 1320‒1322. Link

(8). О.О. Mironenko, V.L. Temerev, N.S. Smirnova, N.B. Shitova, D.А. Shlyapin, Т.N. Afonasenko, P.G. Tsirulnikov, Himija v interesah ustojchivogo razvitija [Chemistry for sustainable development] 1 (2016) 41‒47 (in Russian). Crossref

(9). L.Z. Kasyanov, R.R. Daminev, O.H. Karimov, E.H. Karimov, D.V. Bakke, M.Yu. Tcherezov, Bashkirskij himicheskij zhurnal [Bashkir Chemical Journal] 23 (2016) 30–33 (in Russian).

(10). V.D. Stytsenko, D.P. Mel’nikov, O.P. Tkachenko, E.V. Savel’eva, A.P. Semenov, L.M. Kustov, Russ. J. Phys. Chem. 92 (2018) 862–869. Crossref

Published
2018-09-07
How to Cite
[1]
S. Tanirbergenova, “Nanosized Catalysts in the Process of Hydrogenating Acetylene”, Euras. Chem. Tech. J., vol. 20, no. 3, pp. 249-254, Sep. 2018.
Section
Articles