Potential of Jerusalem Artichoke Stem for Cellulose Production

  • A. N. Prusov Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya, 1, Ivanovo, 153045, Russia
  • S. M. Prusova Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya, 1, Ivanovo, 153045, Russia
  • A. G. Zakharov Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya, 1, Ivanovo, 153045, Russia
  • A. V. Bazanov Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya, 1, Ivanovo, 153045, Russia
  • V. K. Ivanov Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp., 31, Moscow, 119991, Russia
Keywords: Jerusalem artichoke (Helianthus tuberosus L.), сellulose, сhemical properties, сhemical processing, biofuel

Abstract

There is a potential opportunity to convert almost any type of biomass into biofuel and bio- nanomaterials, if the appropriate biotechnological and chemical processing methods are used. The preference for this or that bioresource is due to the stability of the raw material base and the prospect of its use. Jerusalem artichoke stem (Helianthus tuberosus L.) (JA) is widely known as a potential non-food raw material for biofuels due to high biomass extraction (36–49 t/ha (tons per hectare)) and limited cultivation requirements. But little attention is given to study the possibility of using the stems to produce various kinds of cellulose. This article presents samples of cellulose that were obtained from the Jerusalem artichoke stem using mechanical and chemical methods. Cellulose yield from the stem was: cortex 51.1%, pith 65.2% with the α-cellulose content 96–98%. Methods of electron microscopy, atomic absorption, IR spectroscopy, X-ray diffraction, BET for nitrogen adsorption, thermogravimetry were used to study the cortex and the pith of the Jerusalem artichoke stem. Analysis of the cellulose samples confirmed the possibility of obtaining high-quality cellulose.

References

(1). S. Wang, J. Chen, G. Yang, K. Chen, R. Yang, J. Zeng, BioResources 12 (2017) 1031–1040. Crossref

(2). R. Maurya, C. Paliwal, T. Ghosh, I. Pancha, K. Chokshi, M. Mitra, A. Ghosh, S. Mishra, Bioresource Technol. 214 (2016) 787–796. Crossref

(3). A. Jain, R. Balasubramanian, M.P. Srinivasan, Chem. Eng. J. 283 (2016) 789–805. Crossref

(4). M. Sevilla, A. Fuertes, R. Mokaya, Energy Environ. Sci. 4 (2011) 1400–1410. Crossref

(5). C. Sanchez, L. Rozes, F. Ribot, C. Laberty- Robert, D. Grosso, C. Sassoye, C. Boissiere, L. Nicole, CR Chim. 13 (2010) 3–39. Crossref

(6). J. Shen, Z. Song, X. Qian, Y. Ni, Ind. Eng. Chem. Res. 50 (2011) 661–666. Crossref

(7). R. Travaini, J. Martín-Juárez, A. Lorenzo- Hernando, S. Bolado-Rodríguez, Bioresource Technol. 199 (2016) 2–12. Crossref

(8). M.A. Mehmood, G.Ye, H. Luo, C. Liu, S. Malik, I. Afzal, J. Xu, M.S. Ahmad, Bioresource Technol. 228 (2017) 18–24. Crossref

(9). W. Li, J. Zhang, C. Yu, Q. Li, Dong, F. G. Wang, G.D. Gu, Z.Y. Guo, Carbohyd. Polym. 121 (2015) 315–319. Crossref

(10). X.H. Long, H.B. Shao, L. Liu, L.P. Liu, Z.P. Liu, Renew. Sust. Energ. Rev. 54 (2016) 1382–1388. Crossref

(11). J. Matías, J.M. Encinar, J. González, J.F. González, Energy Sustain. Dev. 25 (2015) 34– 39. Crossref

(12). V. Fiore, A. Valenza, G. Di Bella, Compos. Sci. Technol. 71 (2011) 1138–1144. Crossref

(13). T211 om-2. Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C. Approved by the Standard Specific Interest Group for this Test Method TAPPI.

(14). F. Xu, Y.C. Shi, D. Wang, Carbohyd. Polym. 94 (2013) 904–917. Crossref

(15). W. Zhang, Z.L. Yi, J.F. Huang, F.C. Li, B. Hao, M. Li, S.F. Hong, Y.Z. Lv, W. Sun, A. Ragauskas, F. Hu, J.H. Peng, L.C. Peng, Bioresource Technol. 130 (2013) 30–37. Crossref

(16). USP, 2002. 25/NF 20 (United States Pharmacopeia 25/National Formulary 20). 2010. 456 Washington, DC, p. 701.

(17). T.V Prokopov, N.D. Delchev, D.S. Taneva, Journal of Food and Packaging Science, Technique and Technologies. 3 (2014) 64–68.

(18). M. Li, J. Wang, Y. Yang, G. Xie, Bioresource Technol. 208 (2016) 31–41. Crossref

(19). L. Zhou, J. Pang, A. Wang, T. Zhang, 2013. Chinese J. Catal. 34 (2013) 2041–2046. Crossref

(20). M. Ioelovich, E. Morag, BioRes. 6 (2011) 2818–2835.

(21). M. Ioelovich, BioRes. 3 (2008) 1403-1418.

(22). H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Fuel 86 (2007) 1781–1788. Crossref

(23). W. Liu, K. Mohanty, L.T. Drzal, P. Askel, M. Misra, J. Mater. Sci. 39 (2004) 1051–1054. Crossref

(24). L. Zhu, H. Qi, M. Lv, Y. Kong, Y. Yu, X. Xu, Bioresource Technol. 124 (2012) 455–459. Crossref

(25). I.M. De Rosa, J.M. Kenny, D. Puglia, C. Santulli, F. Sarasini, Compos. Sci. Technol. 70 (2010) 116– 122. Crossref

(26). C. Li, J. Lin, G. Zhao, J. Zhang, BioResources 11 (2016) 1596–1608. Crossref

(27). A. Alawar, A.M. Hamed, K. Al-Kaabi, Compos. Part B-Eng. 40 (2009) 601–606. Crossref

(28). M. Poletto, H.L.O. Júnior, A.J. Zattera, Materials 7 (2014) 6105–6119. Crossref

(29). A. Mabuda, N. Mamphweli, E. Meyer, Renew. Sust. Energ. Rev. 53 (2016) 1656–1664. Crossref

(30). J. Hoekstra, A.M. Beale, F. Soulimani, M. Versluijs-Helder, Dirk van de Kleut, J.M. Koelewijn, J.W. Geus, L.W. Jenneskens, Carbon 107 (2016) 248–260. Crossref

(31). M. Sevilla, A.B. Fuertes, Energy Environ. Sci. 4 (2011) 1765–1771. Crossref

(32). F. Yao, Q. Wu, Y. Lei, W. Guo, Y. Xu, Polym. Degrad. Stabil. 93 (2008) 90–98. Crossref

Published
2019-06-30
How to Cite
[1]
A. Prusov, S. Prusova, A. Zakharov, A. Bazanov, and V. Ivanov, “Potential of Jerusalem Artichoke Stem for Cellulose Production”, Eurasian Chem. Tech. J., vol. 21, no. 2, pp. 173-182, Jun. 2019.
Section
Articles