Effect of Acid Treatment on the Functionalization of Surface, Structural and Textural Properties of Carbon Nanotubes Taunit

  • Z.R. Ismagilov Federal Research Center of Coal and Coal Chemistry, Institute of Coal Chemistry
  • S.A. Yashnik Federal Research Center of Coal and Coal Chemistry, Institute of Coal Chemistry and Material Science SB RAS, 18 Sovetskiy pr., Kemerovo, 650000, Russia
  • N.V. Shikina Federal Research Center of Coal and Coal Chemistry, Institute of Coal Chemistry and Material Science SB RAS, 18 Sovetskiy pr., Kemerovo, 650000, Russia
  • E.V. Matus Federal Research Center of Coal and Coal Chemistry, Institute of Coal Chemistry and Material Science SB RAS, 18 Sovetskiy pr., Kemerovo, 650000, Russia
  • O.S. Efimova Federal Research Center of Coal and Coal Chemistry, Institute of Coal Chemistry and Material Science SB RAS, 18 Sovetskiy pr., Kemerovo, 650000, Russia
  • A.N. Popova Federal Research Center of Coal and Coal Chemistry, Institute of Coal Chemistry and Material Science SB RAS, 18 Sovetskiy pr., Kemerovo, 650000, Russia
  • A.P. Nikitin Federal Research Center of Coal and Coal Chemistry, Institute of Coal Chemistry and Material Science SB RAS, 18 Sovetskiy pr., Kemerovo, 650000, Russia
Keywords: carbon nanotubes, surface oxidation, oxygen-bearing groups, Raman spectroscopy, FTIR spectroscopy

Abstract

 The role of acid treatment of Taunit carbon nanotubes in the formation of oxygen-containing functional groups on its surface as well as morphological and textural properties was studied. Acid treatment was carried out in an HNO3 solution or its mixture with H2SO4 under mild conditions (85°C/1 h) with subsequent washing with distilled water or without washing. Properties of the initial and oxidized samples were investigated using elemental carbon, hydrogen, nitrogen, oxygen (CHNO) analysis, BET (Brunauer-Emmett-Teller) determination of surface area, X-ray diffraction, Raman and Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy, and hydrogen temperature-programmed reduction. Treatment with HNO3 and HNO3/H2SO4 mixture was shown to be efficient for the formation of various oxygen-containing groups on the Taunit surface; therewith, the water washing step also contributed to functionalization of the surface. Depending on the oxidant, acid treatment increased graphite and oxygen content in the samples by a factor of 3‒4.5. Treatment with HNO3 without water washing exerted a weak effect on the graphite structure ordering, the concentration of aliphatic groups was high as compared to other oxidation conditions. Treatment of Taunit with the HNO3/H2SO4 mixture, on the contrary, increased the number of defects in graphite layers and decreased the concentration of aliphatic structures.

References

(1). X. Zhao, H. Chen, F. Kong, Y. Zhang, S. Wang, S. Liu, L.A. Lucia, P. Fatehi, H. Pang, Chem. Eng. J. 364 (2019) 226–243. Crossref

(2). M.T.H. Siddiqui, S. Nizamuddin, H.A. Baloch, N.M. Mubarak, M. Al-Ali, S.A. Mazari, A.W. Bhutto, R. Abro, M. Srinivasan, G. Griffin, J. Environ. Chem. Eng. 7 (2019) 1028122. Crossref

(3). F. Barroso-Bujans, R. Verdejo, M. Pérez- Cabero, S. Agouram, I. Rodríguez-Ramos, A. Guerrero-Ruiz, M.A. López-Manchado, Eur. Polym. J. 45 (2009) 1017–1023. Crossref

(4). A. Alonso-Lomillo, O. Rüdiger, A. Maroto- Valiente, M. Velez, I. Rodríguez-Ramos, F.J. Muñoz, V.M. Fernández, A.L. De Lacey, Nano Lett. 7 (2007) 1603–1608. Crossref

(5). L.B. Avdeeva, T.V. Reshetenko, Z.R. Ismagilov, V.A. Likholobov, Appl. Catal. A. 228 (2002) 53‒63. Crossref

(6). T.V. Reshetenko, L.B. Avdeeva, Z.R. Ismagilov, A.L. Chuvilin, V.A. Ushakov, Appl. Catal. A. 247 (2003) 51‒63. Crossref

(7). O.Yu. Podyacheva, Z.R. Ismagilov, A.E. Shalagina, V.A. Ushakov, A.N. Shmakov, S.V. Tsybulya, V.V. Kriventsov, A.V. Ischenko, Carbon 48 (2010) 2792‒2801. Crossref

(8). O.Yu. Podyacheva, A.N. Schmakov, Z.R. Ismagilov, Carbon 52 (2013) 486‒492. Crossref

(9). V.V. Chesnokov, O.Y. Podyacheva, A.N. Shmakov, L.S. Kibis, A.I. Boronin, Z.R. Ismagilov, Chinese J. Catal. 37 (2016) 169‒176. Crossref

(10). S. Iijima, Nature 354 (1991) 56‒58. Crossref

(11). K.P. De Jong, J.W. Geus, Catal. Rev. 42 (2000) 481–510. Crossref

(12). P. Serp, M. Corrias, P. Kalck, Appl. Catal. A Gen. 253 (2003) 337–358. Crossref

(13). E. Antolini, Appl. Catal. B Environ. 88 (2009) 1–24. Crossref

(14). J.H. Bitter, J. Mater. Chem. 20 (2010) 7312– 7321. Crossref

(15). J. Shariati, A. Haghtalab, A. Mosayebi, J. Energy Chem. 28 (2019) 9–22. Crossref

(16). T.G. Ros, A.J. van Dillen, J.W. Geus, D.C. Koningsberger, Chem.– Eur. J. 8 (2002) 1151–1162. Crossref

(17). J.H. Bitter, M.K. van der Lee, A.G.T. Slotboom, A.J. van Dillen, K.P. de Jong, Catal. Lett. 89 (2003) 139–142. Crossref

(18). M.L. Toebes, J.M.P. van Heeswijk, J.H. Bitter, A.J. van Dillen, K.P. de Jong, Carbon 42 (2004) 307–315. Crossref

(19). A.B. Dongil, B. Bachiller-Baeza, A. Guerrero- Ruiz, I. Rodríguez-Ramos, A. Martínez-Alonso, J.M.D. Tascón, J. Colloid Interf. Sci. 355 (2011) 179–189. Crossref

(20). C.M. Yoon, D. Long, S.M. Jang, W. Qiao, L. Ling, J. Miyawaki, C.K. Rhee, I. Mochida, S.H. Yoon, Carbon 49 (2011) 96–105. Crossref

(21). K.L. Klein, A.V. Melechko, T.E. McKnight, S.T. Retterer, P.D. Rack, J.D. Fowlkes, D.C. Joy, M.L. Simpson, J. Appl. Phys. 103 (2008) 061301. Crossref

(22). Y. Sato, K. Shibata, H. Kataoka, S. Ogino, F. Bunshi, A. Yokoyama, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, R. Hatakeyama, F. Watari, K. Tohji, Mol. Biosyst. 1 (2005) 142‒145. Crossref

(23). S. Lim, S.H. Yoon, I. Mochida, J.H. Chi, J. Phys. Chem. B 108 (2004) 1533‒1536. Crossref

(24). H. Darmstadt, L. Summchen, J-M Ting, U. Roland, S. Kaliaguine, C. Roy, Carbon 35 (1997) 1581‒1585. Crossref

(25). B.J. Taft, A.D. Lazareck, G.D. Withey, A.J. Yin, J.M. Xu, S.O. Kelley, J. Am. Chem. Soc. 126 (2004) 12750‒12751. Crossref

(26). P.G. He, L.M. Dai, Chem. Commun. 3 (2004) 348‒349. Crossref

(27). K.M. Metz, K.Y. Tse, S.E. Baker, E.C. Landis, R.J. Hamers, Chem. Mater. 18 (2006) 5398‒5400. Crossref

(28). K. Wang, H.A. Fishman, H.J. Dai, J.S. Harris, Nano Lett. 6 (2006) 2043‒2048. Crossref

(29). S.Yu. Gorski, T.P. Dyachkova, E.A. Burakova. St. Petersburg Polytechnic University Journal of Engineering Science and Technology [Nauch¬no-tehnicheskie vedomosti Sankt-Peterburgsko¬go gosudarstvennogo politehnicheskogo univer¬siteta] 1 (2014) 108‒112. (in Russian).

(30). T.P. Dyachkova, Yu.A. Khan, N.V. Orlova, S.V. Kondrashov, Bulletin of Tambovsky State Technical University [Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta] 22 (2016) 323‒333 (in Russian). Crossref

(31). T.P. Dyachkova. Phisiko-khimicheskie osnovy funktsializatsii I modifitsirovaniya uglerodnykh nanomaterialov. Dokt, Diss. [Physico-chemical bases of functionalization and modification of carbon nanomaterials. Doct. Thes.]. Tambov, 2016. 404 p. (in Russian).

(32). Z. Ismagilov, S. Yashnik, M. Kerzhentsev, V. Parmon, A. Bourane, F.M. Al-Shahrani, A.A. Hajji, O.R. Koseoglu, Catal. Rev. 53 (2011) 199‒255. Crossref

(33). G.X. Yu, S.X. Lu, H. Chen, Z.N. Zhu, Carbon 43 (2005) 2285‒2294. Crossref

(34). X.L. Zhou, Q. Tan, G.X. Yu, L.F. Chen, J.A. Wang, O. Novaro, Kinet. Catal. 50 (2009) 543‒549. Crossref

(35). K.G. Haw, W.A.W.A. Bakar, R. Ali, J.F. Chong, A.A.A. Kadir, Fuel Proc. Tech. 91 (2010) 1105–1112. Crossref

(36). J. Xiao, L. Wu, Y. Wu, B. Liu, L. Dai, Z. Li, Q. Xia, H. Xi, Appl. Energy 113 (2014) 78‒85. Crossref

(37). M.T. Timko, J.A. Wang, J. Burgess, P. Kracke, L. Gonzalez, C. Jaye, D.A. Fischer, Fuel 163 (2016) 223‒231. Crossref

(38). W. Zhang, H. Zhang, J. Xiao, Z. Zhao, M. Yu, Z. Li, Green Chem. 16 (2014) 211‒220. Crossref

(39). Q. Gu, G. Wen, Y. Ding, K.H. Wu, C. Chen, D. Su, Green Chem. 19 (2017) 1175‒1181. Crossref

(40). S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green, Nature 372 (1994) 159‒162. Crossref

(41). F. Tuinstra, J.L. Koenig, J. Chem. Phys. 53 (1970) 1126‒1130. Crossref

(42). S. Costa, E. Borowiak-Palen, M. Kruszyñska, A. Bachmatiuk, R.J. Kalenczuk, Mater. Sci.- Poland 26 (2008) 433‒441.

(43). O.S. Timofeev, N.G. Chechenin. Proceedings of the XII Interuniversity scientific school of young specialists “Concentrated energy flows in space technology, electronics, ecology and medicine”. Moscow 21-22 November 2011, p. 118–123 (in Russian).

(44). G. Socrates. Infrared and Raman Characteristic Group Frequencies. Tables and Charts. Third Edition. John Wiley& Sons Ltd. 2001.

(45). Z.R. Ismagilov, A.E. Shalagina, O.Yu. Podyacheva, A.V. Ischenko, L.S. Kibis, A.I. Boronin, Y.A. Chesalov, D.I. Kochubey, A.I. Romanenko, O.B. Anikeeva, T.I. Buryakov, E.N. Tkachev, Carbon 47 (2009) 1922‒1929. Crossref

(46). T.G. Ros, A.J. van Dillen, J.W. Geus, D.C. Koningsberger, ChemPhysChem 3 (2002) 209‒214. Crossref

(47). L. Stobinski, B. Lesiak, L. Kövér, J. Tóth, S. Biniak, G. Trykowski, J. Judek, J. Alloys Compd. 501 (2010) 77‒84. Crossref

(48). S. Kundu, Y. Wang, W. Xia, M. Muhler, J. Phys. Chem. C 112 (2008) 16869–16878. Crossref

(49). L.C.A. Oliveira, C.N. Silva, M.I. Yoshida, R.M. Lago, Carbon 42 (2004) 2279–2284. Crossref

(50). Z. Zhou, E.K. Orcutt, H.C. Anderson, K.J. Stowers, Carbon 152 (2019) 924–931. Crossref

(51). J.L. Figueiredo, M.F.R. Pereira, M.M.A. Freitas, J.J.M. Orfao, Carbon 37 (1999) 1379–1389. Crossref

(52). I. Graca, L.V. Gonzalez, M.C. Bacariza, A. Fernandes, C. Henriques, J.M. Lopes, M.F. Ribeiro, Appl. Catal. B 147 (2014) 101–110. Crossref

(53). H. Zhao, C. Xu, T. Wang, Sustainable Chemistry and Pharmacy 13 (2019) 100150. Crossref

Published
2019-12-17
How to Cite
[1]
Z. Ismagilov, “Effect of Acid Treatment on the Functionalization of Surface, Structural and Textural Properties of Carbon Nanotubes Taunit”, Eurasian Chem. Tech. J., vol. 21, no. 4, pp. 291-302, Dec. 2019.
Section
Articles