Calorimetric Research into the Heat Capacity of Novel Nano-Sized Cobalt(Nickelite)-Cuprate-Manganites of LaBaMeIICuMnO6 (MeII = Co, Ni) and their Thermodynamic Properties

  • B. K. Kassenov Abishev Chemical-Metallurgical Institute, 63 Ermekov Str., 100009 Karaganda, Kazakhstan
  • Sh. B. Kassenova Abishev Chemical-Metallurgical Institute, 63 Ermekov Str., 100009 Karaganda, Kazakhstan
  • Zh. I. Sagintaeva Abishev Chemical-Metallurgical Institute, 63 Ermekov Str., 100009 Karaganda, Kazakhstan
  • E. E. Kuanyshbekov Abishev Chemical-Metallurgical Institute, 63 Ermekov Str., 100009 Karaganda, Kazakhstan
  • M. O. Turtubaeva Toraigyrov Pavlodar State University, 64 Lomov Str., 140008 Pavlodar, Kazakhstan
Keywords: cobalt(nickelite)-cuprate-manganite, heat capacity, thermodynamics

Abstract

The isobaric heat capacities of novel nano-sized cobalt-cuprate-manganite of lanthanum and barium LaBaCoCuMnO6 and nickel-cuprate-manganite of lanthanum and barium LaBaNiCuMnO6 were investigated by dynamic calorimetry over the temperature range of 298.15‒673 K. It is found that a λ-shaped effect is observed on the curve of the heat capacity dependence on temperature of LaBaCoCuMnO6 at 523 K, while LaBaNiCuMnO6 also has a similar effect at 473 K. Equations for the temperature dependence of the heat capacity of cobalt(nickelite)-cuprate-manganite of lanthanum and barium are derived with allowance for the temperatures of phase transitions. Based on the experimental data, the fundamental constants ‒ the standard heat capacities of the compounds under study were found. Irrespective of the experimental data, we also calculated the standard heat capacities of the mentioned compounds using the Debye theory using the characteristic temperatures of the elements, their melting points, the Koref and Nernst-Lindemann equations. The obtained calculated data on C0p (298.15) of the compounds were in satisfactory agreement with the experimental data on the standard heat capacity. The standard entropies of LaBaCoCuMnO6 and LaBaNiCuMnO6 were calculated by the ion increment method. We calculated the temperature dependences of the enthalpy Ho(T)- Ho(298.15), entropy ΔSo(T), and the reduced thermodynamic potential ΔФ**(Т).

References

(1). J.G. Bednorz, K.A. Müller, Z. Physica B 64 (1986) 189‒193. Crossref

(2). S.A. Nikitin, Soros Educational Journal [Sorosovskii obrazovatelnyi zhurnal] 2 (2004) 92‒98 (in Russian).

(3). Yu.D. Tretyakov, E.A. Gudilin, Russ. Chem Rew. 69 (2000) 3‒40. Crossref

(4). Ya.M. Mukovsky, Mendeleev Chemistry Journal [Zhurnal Ross.Khim.ob-va im D.I. Mendeleeva] XLV (2001) 32‒41. (in Russian).

(5). Yu. Yerin, Chemistry and chemists [Himiya i himiki] 1 (2009) 16‒22 (in Russian)

(6). A. Tarjomannejad, A. Niaei, M. José Illán Gómez, A. Farzi, D. Salari, V. Albaladejo- Fuentes, J. Therm. Anal. Calorim. 129 (2017) 671‒680. Crossref

(7). Yu.D. Tretyakov, O.A. Brylyov, Mendeleev Chemistry Journal [Zhurnal Ross.Khim.ob-va im D.I. Mendeleeva] 44 (2000) 10‒16 (in Russian).

(8). P.A. Grünberg, Phys-Usp. [Uspekhi Fizicheskikh Nauk] 178 (2008) 1349‒1358 (in Russian). Crossref

(9). G.B. Sergeyev. Nanochemistry. Moscow, MSU publ. 2007, 336 p. (in Russian).

(10). B.K. Kasenov, Sh.B. Kasenova, Zh.I. Sagintayeva, M.O. Turtubayeva, E.E. Kyanyshbekov, Chemical Journal of Kazakhstan [Himicheskij zhurnal Kazahstana] 4 (2018) 264‒269.

(11). E.S. Platunov, S.E. Buravoy, V.V. Kurepin, G.S. Petrov. Heatphysical measurements and devices. Leningrad, Mechanical engineering, 1986. 256 p. (in Russian).

(12). Technical specification and maintenance instructions of IT-S-400. Aktyubinsk, Aktyubinsk plant “Etalon”, 1986, 48 p. (in Russian).

(13). V.P. Spiridonov, L.V. Lopatkin. Mathematical processing of experimental data. Moscow, MSU publ., 1970, 221 p. (in Russian).

(14). Z.M. Sharipova, B.K. Kassenov, V.O. Bukharitsyn, Russ. J. Phys. Chem. [Zhurnal fizicheskoi himii] 65 (1991) 1408‒1410 (in Russian).

(15). V.P. Glushko, Thermal constants of substances. Moscow, Science, 1981, 300 p. (in Russian).

(16). R.A. Robie, B.S. Hemingway, J.R. Fisher, (1978). Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pa) pressure and at higher temperatures. U.S. Geological Survey Bulletin No. 1452. U.S. Government Printing Office,Washington, DC. 456 p.

(17). Sh.B. Kassenova, B.K. Kassenov, Zh.I. Sagintayeva, K.T. Ermaganbetov, E.E. Kuanyshbekov, A.A. Seisenova, D.I. Smagulova, Zhurnal fizicheskoi himii [Russian Journal of Physical Chemistry] 88 (2014) 836‒840 (in Russian). Crossref

(18). B.K. Kassenov, M.O. Turtubayeva, Sh.K. Amerkhanova, Sh.B. Kassenova, Zh.I. Sagintayeva, E.E. Kuanyshbekov, A.A. Seisenova, D.I. Smagulova, Russ. J. Phys. Chem. 89 (2015) 941‒946. Crossref

(19). B.K. Kassenov, Sh.B. Kassenova, Zh.I. Sagintayeva, M.O. Turtubayeva, K.S. Kakenov, G.A. Esenbayeva, Russ. J. Phys. Chem. 91 (2017) 430‒436. Crossref

(20). L.А. Reznitskiy. Calorimetry of a solid body. Moscow, MSU publ., 1981, 184 p. (in Russian).

(21). B.K. Kassenov, Sh.B. Kassenova, Zh.I. Sagintaeva, B.T. Ermagambet, N.S. Bekturganov, I.M. Oskembekov. Double and triple manganites, ferrites and chromites of alkali, alkaline earth and rare earth metals. Moscow, Nauchnyi mir, 2017, 416 p. (in Russian).

(22). A.S. Morachevsky, I.V. Sladkov. Thermo-dynamic calculations in metallurgy. Reference. Moscow, Metallurgy, 1985, 137 p. (in Russian).

(23). A.S. Morachevsky, I.V. Sladkov. Guideline to performance of thermodynamic calculations. Leningrad, LPI named after M.I. Kalinin, 1975, 67 p. (in Russian).

(24). V.N. Kumok, Problem of coordination of methods of assessment of thermodynamic characteristics. Direct and return problems of chemical thermodynamics. Novosibirsk, 1987, 108‒123 (in Russian).

(25). Ya.I. Gerassimov, A.N. Krestovnikov, S.I. Gorbov. Chemical thermodynamics in nonferrous metallurgy. Moscow, Metallurgizdat, 1973, 296 p. (in Russian).

Published
2020-03-26
How to Cite
[1]
B. Kassenov, S. Kassenova, Z. Sagintaeva, E. Kuanyshbekov, and M. Turtubaeva, “Calorimetric Research into the Heat Capacity of Novel Nano-Sized Cobalt(Nickelite)-Cuprate-Manganites of LaBaMeIICuMnO6 (MeII = Co, Ni) and their Thermodynamic Properties”, Eurasian Chem. Tech. J., vol. 22, no. 1, pp. 27-33, Mar. 2020.
Section
Articles