Rapid Rubber Extraction and NMR Spectroscopy of Rubber, Extracted from the Endemic Species Scorzonera Tau-Saghyz

Authors

  • K. K. Boguspaev Scientific Research Institute of Biology and Biotechnology Problems, 71 al-Farabi ave., Almaty, Kazakhstan
  • S. K. Turasheva Scientific Research Institute of Biology and Biotechnology Problems, 71 al-Farabi ave., Almaty, Kazakhstan; al-Farabi Kazakh National University, Department of Biotechnology, 71 al-Farabi ave., Almaty, Kazakhstan
  • T. M. Seilkhanov Sh. Ualikhanov Kokshetau State University, 76 Abay ave., Kokshetau, Kazakhstan
  • D. G. Faleev Scientific Research Institute of Biology and Biotechnology Problems, 71 al-Farabi ave., Almaty, Kazakhstan
  • M. S. Mutalkhanov al-Farabi Kazakh National University, Department of Biotechnology, 71 al-Farabi ave., Almaty, Kazakhstan
  • V. H. Portnoy Tel Aviv University, The Institute for Cereal Crops Improvement, 205, 69978 , Tel Aviv, Israel

DOI:

https://doi.org/10.18321/ectj931

Keywords:

Scorzonera tau-saghyz, natural rubber, extraction, regeneration

Abstract

Scorzonera tau-saghyz Lipsch. et G.G. Bosse is an endemic rubber producing plant, growing in mountain regions in South Kazakhstan. The rubber content in plants and the quality of biopolymer has an important impact on industrial rubber production. The results of this study showed that the amount of rubber in S. tau-saghyz roots fluctuates between 7.74% and 38.75%. The amount of synthesized and deposited rubber biopolymer particles depends on various factors such as physiological age of plant, origin, temperature, moisture and environmental conditions. We optimized the extraction method of natural rubber by using n-hexane as a solvent for direct extraction. This method allows extracting the maximum amount of rubber from 3‒4-year-old plants. NMR results show structural links of natural isoprene rubber in the root extract sample. There is a clear relationship between methyl, methine and methylene protons which corresponds to isoprene rubber structure. The samples having strongly marked singlets that are inherent for rubber functional groups confirms the stereospecific structure of rubber. Good solubility of the root extract in deuterated chloroform can characterize the low molecular weight of the polymer. NMR characterization of rubber, extracted from S. tau-saghyz roots, is reported for the first time. Regeneration in vitro provides an important opportunity for endemic preservation by rapidly increasing the number of plants. The best regeneration of adventitious shoots was obtained on MS medium containing 5.5 μM kinetin and 0.5 μM NAA. The plants were successfully acclimatized in a glasshouse with 75% of S. tau-saghyz plantlets, respectively surviving after transfer to ex vitro conditions.

References

(1). N.M.C. Nayanakantha, P. Seneviratne, Ceylon Journal of Science 36 (2007) 116–125. Crossref

(2). J. Collins-Silva, A. Nural, A. Skaggs, D. Scott, U. Hathwaik, R. Woolsey, K. Schegg, C. McMahan, M. Whalen, K. Cornish, D. Shintani, Phytochemistry 79 (2012) 46–56. Crossref

(3). C. Pearson, K. Cornish, D.J. Rath, Ind. Crop. Prod. 43 (2013) 506‒510. Crossref

(4). K. Cornish, Nat. Prod. Rep. 18 (2016) 182–189. Crossref

(5). D. Ramirez-Cadavid, S. Valles-Ramirez, K. Cornish, C.F. Michel Jr., Ind. Crop. Prod. 122 (2018) 647‒656. Crossref

(6). G. Bosse. Method of rubber extraction from rubber-bearing plants. Author copyright certificate: SU 41180 A1, dated 19 April 1934 (in Russian). Link

(7). S. Lipshitz. A new rubber plant of Kazakhstan the Taraxacum kok-saghyz. Moscow & Leningrad, Goschimtechizdat, 1934. 57 p. (in Russian).

(8). G. Krotkov, Bot. Rev. 11 (1945) 417‒461. Crossref

(9). K. Uteulin, S. Mukhambetzhanov, I. Rakhimbaev, World Academy of Science, Engineering and Technology, International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 8 (2014) 385‒387.

(10). S. Kohjiya, Y. Ikeda, Chemistry, Manufacture and Applications of Natural Rubber, 1st Edition, 2014, p. 528. ISBN: 9780857096913

(11). K. Cornish, S. Kopicky, S. McNulty, N. Amstutz, A. Chanon, S. Walker, M. Kleinhenz, A. Miller, J. Streeter, Biodiversitas 17 (2001) 847–856. Crossref

(12). Jan B van Beilen, Y. Poirier, Trends Biotechnol. 25 (2007) 522–529. Crossref

(13). E.I. Bello, F. Otu, British Journal of Applied Science & Technology 6 (2015) 261–275. Crossref

(14). S. Tuampoemsab, A. Nimpaiboon, T.J. Sakdapipanich, Polym. Test. 43 (2015) 21–26. Crossref

(15). Ch. Li, H. Wang, M. Juárez, E.D. Ruan, International Journal of Spectroscopy 1 (2014) Article ID 789356. Crossref

(16). M. Silva, F. Andrade, G. Filho, M. Monteiro, E.R. de Azevedo, T. Venâncio, Fuel 186 (2016) 50–57. Crossref

(17). T. Saito, W. Klinklai, S. Kawahara, Polymer 48 (2007) 750–757. Crossref

(18). T. Lameris, T.P.M. Fijen, R. Urazaliev, G. Pulikova, P. Donald, J. Kamp, Biodivers. Conserv. 25 (2016) 2381–2400. Crossref

(19). P. Jayasree, M. Asokan, S. Sobha, L. Ammal, K. Rekha, R. Kala, R. Jayasree, A. Thulaseedharan, Curr. Sci. 76 (1999) 1242–1245.

(20). M.-H. Lee, E.-S. Yoon, S.-J. Jung, K.-H. Bae, J.-W. Seo, Y.-E. Choi, Journal of Plant Biotechnology 29 (2002) 111–115. Crossref

(21). A. Smertenko, P. Bozhkov, J. Exp. Bot. 65 (2014) 1343–1360. Crossref

(22). L. Lardet, F. Martin, F. Dessailly, M. Carron, P. Montoro, Plant Cell Rep. 26 (2007) 559–569. Crossref

(23). S. Cogbill, T. Faulcon, G. Jones, M. McDaniel, G. Harmon, R. Blackmon, M. Young, Plant Cell Tiss. Org. 101 (2010) 127–133. Crossref

(24). J.-C. Feng, X.X. Yu, X.L. Shang, J.D. Li, Y.X. Wu, Plant Cell Tiss. Org. 101 (2010) 111–117. Crossref

(25). M. Agarwal, Journal of Plant Sciences 3 (2015) 24–32.

(26). T. Murashige, F. Skoog, Physiol. Plantarum 15 (1962) 473–497. Crossref

(27). K. Cornish, C. Pearson, D.J. Rath, Ind. Crop. Prod. 41 (2013) 158–164. Crossref

(28). K. Cornish, Phytochemistry 57 (2001) 1123– 1134. Crossref

(29). M. Astashina, E. Udalova, V. Yamilova, Bashkir Chemical Journal [Bashkirskii khimicheskii zhurnal] 24 (2017) 92–97 (in Russian).

(30). Z. Hu, Z. Wen, Biochem. Eng. J. 38 (2008) 369– 378. Crossref

(31). S. Sikandar, V. Ujor, T. Ezeji, J. Rossington, F. Michel Jr., C. McMahan, N. Ali, K. Cornish, Ind. Crop. Prod. 103 (2017) 161–168. Crossref

(32). A. Buranov, Process for recovering rubber from rubber-bearing plants with a gristmill, US, Patent Application Publication, 2007, p. 8, US 2007/0276112 A1

(33). S. Pongsathit, C. Pattamaprom, Radiat. Phys. Chem. 144 (2018) 13–20. Crossref

(34). G. Ali, F. Hadi, Z. Ali, M.A. Khan, Biotechnology 6 (2007) 561–566. Crossref

(35). E. Omo-Ikerodah, K. Omokhafe, F. Akpobome, M. Mokwunye, African Journal of Biotechnology 8 (2009) Article Number: 4EDA58932430.

(36). R. Parimalan, P. Giridhar, G. Ravishankar, Plant Cell Tiss. Org. 105 (2010) 285–290. Crossref

Downloads

Published

2020-03-26

How to Cite

Boguspaev, K. K., Turasheva, S. K., Seilkhanov, T. M., Faleev, D. G., Mutalkhanov, M. S., & Portnoy, V. H. (2020). Rapid Rubber Extraction and NMR Spectroscopy of Rubber, Extracted from the Endemic Species Scorzonera Tau-Saghyz. Eurasian Chemico-Technological Journal, 22(1), 59–68. https://doi.org/10.18321/ectj931

Issue

Section

Articles