Numerical Modeling of Disperse Materials Process in a Continuous-Flow Plasma Reactor

Authors

  • B. A. Urmashev Al-Farabi Kazakh National University, 050040, al-Farabi ave. 71, Almaty Kazakhstan
  • A. Issakhov Al-Farabi Kazakh National University, 050040, al-Farabi ave. 71, Almaty Kazakhstan

DOI:

https://doi.org/10.18321/ectj710

Abstract

The paper presents a numerical simulation of the propagation of the direct-flow temperature plasma reactor, which is solved by the compressible Navier–Stokes equations, numerical algorithm based on SIMPLE algorithm that are approximated by finite volume method. In the numerical solution of the equation system can be divided into four stages. The first stage the transfer of momentum carried out only by convection and diffusion. The intermediate velocity field is solved by the solution of the differential velocity gradient equation, the Green-Gauss Cell Based scheme is used. The second stage for the pressure field, PRESTO numerical scheme is applied. In the third step it is assumed that the transfer is carried out only by the pressure gradient. The fourth step of the equation is solved for the temperature transport equation as well as the momentum equations by the Green-Gauss Cell Based scheme is used. The algorithm is parallelized on high-performance systems. With this numerical algorithm numerical results of temperature distribution in a continuous-flow plasma reactor was obtained. Numerical modeling allows us to give a more precise description of the processes that have been identified or studied theoretically by laboratory methods, and can reveal new physical phenomena processes that are not yet available, seen in experimental studies. Simulation results show that the constructed numerical model provides the necessary accuracy and stability, which should accurately describe the process during the time interval.

References

(1). V.A. Rabinovich. Disperse systems. Encyclopedia of Chemistry, 1985. 704 p. (in Russian).

(2). N.B. Uryev. Highly concentrated disperse systems. M., 1980. 502 p. (in Russian).

(3). S. Patankar. The exact methods of solving the problems of heat transfer and the dynamics of liquids. M.: Energotaatomizdat, 1984. 152 p. (in Russian).

(4). B.F. Semenov. A turbulent flow of gas in the channel of the plasmotron with a closed electrode is observed. Bulletin of the Kirghiz-Russian Slavic University. 5 (2003) 110 p. (in Russian).

(5). B.C. Engel'sht, V.T. Gurovich, G.A. Detyatkov and etc. The stability of the arc of the electric arc. Advocacy: Hauka CO 1 (1990) 376 p. (in Russian).

(6). A. Zhajnakov, R.M. Urusov, T.Je. Urusova. Pure analysis of non-electronical electric arcs. Bishkek: Ilim, 2001. 232 p. (in Russian).

(7). I.G. Panevin, B.I. Hvecjuk, I.P. Hazarenko and etc. Theory and calculation of near-electrode processes. Novocherry: Hauka, SB RAS, 10 (1992) 197 p. (in Russian).

(8). M.F. Zhukov, I.M. Zasypkin, A.H. Tymoshevsky, B.I. Mihajlov, G.A. Desjatkov. Electric arc generators of the thermal plasma. Novocity: Hauka, SB RAS, 17 (1999) 712 p. (in Russian).

(9). M.F. Zhukov, A.C. Kopoteev, B.A. Upyukov A typical dynamo of the plasma. Novosibirsk: Hauka SB RAS, 1975. 298 p. (in Russian).

(10). D.C. Wilcox Turbulence Modeling for CFD, 2nd ed. DCW Industries, 2006, – 522 p.

(11). T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang, J. Zhu. Comput. Fluids 24 (3) (1995) 227–238. Crossref

(12). T. Chung, Computational Fluid Dynamics. 978- 1-107-42525-5 - Computational Fluid Dynamics: Second Edition. Cambridge University Press, 2002 – 1012 p. ISBN 978-0-521-76969-3

(13). J.H. Ferziger, M. Peric. Computational Methods for Fluid Dynamics. Springer; 3rd edition, 2013, – 426 p.

(14). R. Peyret, D.Th. Taylor, Computational Methods for Fluid Flow. New York: Berlin: Springer- Verlag. 1983, 358 p.

(15). P.J. Roache, Computational Fluid Dynamics, Albuquerque, NM: Hermosa Publications. 1972, – 434 p.

(16). O.P. Solonenko, I.P. Gulyaev, A.V. Smirnov, J. Therm. Sci. Tech.-JPN 6 (2) (2011) 219–234. Crossref

(17). I.P. Gulyaev, Journal of Physics: Conference Series 441 (2013) 012033, 2013. Crossref

(18). S.V. Patankar, D.B. Spalding, Int. J. Heat Mass Transfer 15 (10) (1972) 1787–1806. Crossref

(19). A. Issakhov, The Scientific World Journal 2014 (2014) Article ID 678095, 10 pages. Crossref

(20). A. Issakhov, Int. J. Nonlin. Sci. Num. 15 (2) 115– 120. Crossref

(21). A. Issakhov, Int. J. Nonlin. Sci. Num. 16 (5) (2015) 229–238. Crossref

(22). A. Issakhov, Appl. Math. Model. 40 (2) (2016) 1082–1096. Crossref

(23). A. Issakhov, Mathematical Modelling of the Thermal Process in the Aquatic Environment with Considering the Hydrometeorological Condition at the Reservoir-Cooler by Using Parallel Technologies. Sustaining Power Resources through Energy Optimization and Engineering, Eds: Vasant, Pandian, and Nikolai Voropai. IGI Global, 2016, pp. 1–494, Chapter 10 (2016) 227–243. Crossref

(24). A. Issakhov, AIP Conference Proceedings 1738 (2016) 480025. Crossref

(25). O.P. Solonenko, Y. Ando, H. Nishiyama, D. Kindole, A.V. Smirnov, A.A. Golovin, S. Uehara, T. Nakajima. Post-treatment of TiO2 surface layers by quasi-laminar argon-helium plasma jet. In Proceedings of XIII International conference “Gas-discharge Plasma and Its Application”. September 5-7, 2017, ITAM SB RAS, Novosibirsk, Russia, 2017. – P. 25.

(26). A. Issakhov, Power, Control and Optimization. Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 239). 239 (2013) 165–179. Crossref

(27). A. Issakhov, AIP Conference Proceedings 1863 (2017) 560050. Crossref

(28). A. Issakhov, AIP Conference Proceedings 1499 (2012) 15–18 Crossref

(29). A. Issakhov, Int. J. Nonlin. Sci. Num. 18(6) (2017) 469–483. Crossref

(30). A. Issakhov, International Journal of Energy for a Clean Environment 16 (2015) 23–28.

(31). H.C. Kim, F. Iza, S.S. Yang, M. Radmilovic- Radjenovic, and J.K. Lee, Journal of Physics D: Applied Physics 38 (2005) R283–R301. Crossref

(32). K. Kutasi and Z. Donkó, Journal of Physics D: Applied Physics 33 (2000) 1081–1089. Crossref

(33). M.R. Poor and C. B. Fleddermann, J. Appl. Phys. 70 (6) (1991) 3385–3387. Crossref

(34). H. Ueda, Y. Omura, H. Matsumoto, and T. Okuzawa, Comput. Phys. Commun. 79 (1994) 249–259. Crossref

(35). J.P. Verboncoeur, Plasma Phys. Contr. F. 47 (2005) A231–A260. Crossref

(36). D.R. Welch, C.L. Olson, and T.W.L. Sanford. Phys. Plasmas 1 (3) (1994) 764–773. Crossref

Downloads

Published

2018-01-24

How to Cite

Urmashev, B. A., & Issakhov, A. (2018). Numerical Modeling of Disperse Materials Process in a Continuous-Flow Plasma Reactor. Eurasian Chemico-Technological Journal, 20(1), 73–79. https://doi.org/10.18321/ectj710

Issue

Section

Articles