Effect of Preparation Method on the Activity of Fe₂O₃-NiO/γ-Al₂O₃ Catalyst in Decomposition of Methane

G. Yergaziyeva^{1,2*}, N. Makayeva^{1,2}, M. Anissova¹, K. Dossumov¹, M. Mambetova¹, Z. Shaimerden², A. Niyazbaeva², E. Akkazin²

¹Institute of Combustion Problems, 172, Bogenbai batyr str., Almaty, Kazakhstan ²al-Farabi Kazakh National University, 71, al-Farabi ave., Almaty, Kazakhstan

Article info	Abstract
Received:	The effect of method preparation on the activity of Fe_2O_3 -NiO/ γ -Al ₂ O ₃ catalyst was
14 April 2022	investigated in process decomposition of methane. Fe_2O_3 -NiO/ γ -Al ₂ O ₃ catalyst was prepared by impregnation and solution combustion methods. The samples were
Received in revised form:	characterized by X-ray phase analysis (XRD), temperature-programmed hydrogen
10 May 2022	reduction (TPR-H ₂), BET and Raman spectroscopy. It has been shown that the method of preparation plays an important role in regulating the textural and morphological
Accepted:	properties of catalysts and provides a difference in their catalytic activity. The synthesis
24 June 2022	of the Fe ₂ O ₃ -NiO/ γ -Al ₂ O ₃ catalyst by the solution combustion method, in comparison with the capillary impregnation method, leads to the formation of a large amount of FeNi and FeAl ₂ O ₄ solid solutions, which ensured good catalytic activity at high
Keywords:	temperatures. The Fe ₂ O ₃ -NiO/ γ -Al ₂ O ₃ catalyst synthesized by the solution combustion
Decomposition	method demonstrated good activity with a hydrogen yield of 52% within 150 min of
Methane	the reaction without any deactivation. According to the results of Raman spectroscopy,
Catalyst	graphene-like carbon was obtained on the surface of the catalysts. On the catalyst of
Hydrogen Graphene-like carbon	Fe_2O_3 -NiO/ γ -Al ₂ O ₃ (CI) synthesized by capillary impregnation, 4–5 layer graphene on Fe_2O_3 -NiO/ γ -Al ₂ O ₃ (SC)-6-7 layer graphene is formed.

1. Introduction

The catalytic decomposition of methane (CDM) is a promising method for obtaining pure hydrogen without CO_x . The advantage of catalytic decomposition of methane to hydrogen in comparison with steam methane reforming, water electrolysis, and other processes are described in detail in [1–3]. Nickel oxide is widely studied as catalysts for CDM, but the main disadvantage of these catalysts is its rapid deactivation. Iron oxide is a promising catalyst that is not inferior in activity to nickel catalysts. Iron, like nickel, has partially filled 3d orbitals to facilitate the dissociation of hydrocarbons due to the partial acceptance of electrons [4].

Recently, monometallic Fe catalysts deposited on oxide supports, Al_2O_3 and SiO_2 , have been widely studied [5–7].

*Corresponding author. E-mail addresses: ergazieva_g@mail.ru

Murata et al. [5] compared the activity of 10 wt.% Fe/Al₂O₃ and 10 wt.% Fe/SiO₂ catalysts in methane decomposition under the same conditions. The authors found that the methane conversion was higher on the 10 wt.% Fe/Al₂O₃ catalyst and amounted to 75%, while the methane conversion on 10 wt.% Fe/SiO₂ was only 10%. The authors of [6] also conducted comparative studies of the activity of 20 wt.% Fe/Al₂O₃ and 20 wt.% Fe/SiO₂ in the decomposition of methane under the same conditions. The results showed that at a reaction temperature of 700 °C, a catalyst of 20 wt.% Fe/SiO₂ provides 5% methane conversion, while 20 wt.% Fe/Al_2O_3 , the conversion of methane was 83%. The authors explain the low activity of the iron catalyst supported on silicon oxide compared to aluminum oxide with the low specific surface area and pore volume of the 20 wt.% Fe/SiO₂ catalyst.

The authors of [8–10] reported on the promoter effect of some transition metal additives on the characteristics of iron-containing samples in the decomposition of methane. The authors of [8] studied the activity of Fe/Mo/MgO (respectively, the molar ratio is 50:7.5:42.5) in the decomposition of methane, at 900 °C the conversion of methane was 87%. The authors reported that the combination of Fe particles with Mo will help prevent the agglomeration of Fe particles under operating conditions at temperatures above 800 °C, which positively affects its activity. Pudukudi et al. [11] studied the activity of the 25 wt.% Fe/25 wt.% Co/SBA-15 catalyst in the decomposition of methane at 700 °C. The catalyst was highly active due to the formation of bimetallic alloys between iron oxide and cobalt, the hydrogen yield was 51%.

From the analysis of the literature, it follows that the activity of iron oxide is affected by both the nature of the carrier and the modifying additives. Iron-containing catalysts supported on alumina are more active compared to catalysts supported on silicon oxide due to effective textural characteristics. Bimetallic iron catalysts are active compared to monometallic ones due to the formation of alloys between the iron oxide and the promoter.

It is known [12, 13] that the catalyst synthesis method plays an important role in the formation of the active phase, porous structure, etc. Therefore, it was interesting to study the effect of the synthesis method on the activity and physicochemical characteristics of bimetallic iron-containing catalysts. The purpose of this work is to study the effect of preparation methods (capillary impregnation and solution combustion) on the activity of the Fe₂O₃-NiO/ γ -Al₂O₃ catalyst in the decomposition of methane to hydrogen and to study the physicochemical properties of the catalysts.

The choice of the synthesis method as capillary impregnation and combustion of the solution is justified by the fact that these methods have a number of advantages compared to other methods (sol-gel, deep impregnation, etc.): relative simplicity, less harmful waste and more efficient use of a low-percentage active component, there is no loss of the impregnating solution, which is especially important in the manufacture of expensive catalysts [14].

2. Experimental

Fe₂O₃-NiO/ γ -Al₂O₃ catalysts (Fe:Ni oxide ratio = 3:1) were prepared by capillary impregnation of support (γ -Al₂O₃, Changhai Jiuzhou Chemicals Co.) according to its moisture capacity aqueous solutions of salts Ni(NO₃)₂ · 6H₂O (SUST: 4055-70) and Fe(NO₃)₃ · 9H₂O (SUST: 4111-74) and the

Fig. 1. Scheme of a flow-through installation.

solution combustion method with the addition of a dispersing agent (urea). Catalysts synthesized by capillary impregnation of Fe_2O_3 -NiO/ γ -Al₂O₃ (CI) and combustion in a solution of Fe_2O_3 -NiO/ γ -Al₂O₃ (SC) were dried at 300 °C (2 h) and calcined at 500 °C for 3 h.

Testing the activity of Fe_2O_3 -NiO/ γ -Al₂O₃ (CI) and Fe_2O_3 -NiO/ γ -Al₂O₃ (SC) catalysts in methane decomposition were carried out in a flow laboratory setup (Scheme 1).

The decomposition of methane was carried out in a quartz flow reactor (length 36 cm, inner diameter 1 cm). For each run 2 ml of fresh catalyst previously reduced with 6% H₂/94% N₂ at 750 °C for 3 h was used. After reduction, hydrogen was removed by a nitrogen flow from the reaction system, then a methane/nitrogen mixture was supplied at a given temperature at a flow rate of 160 ml/ min, the methane content in the initial reaction mixture was 6 vol.%. Process conditions: reaction temperature T = 650–850 °C, gas volumetric flow rate (methane:nitrogen) WHSV = 5000 h⁻¹, atmospheric pressure.

The reaction products were analyzed on a Khromos GH-1000 chromatograph (Russia). Two columns were used to analyze possible reaction products: a packed column (l = 1 m, d = 2 mm) with CaA sorbent for hydrogen analysis; an HP/Plot Q column was used to identify CH₄, CO₂ and CO. The first analysis of the reaction products was carried out 15 min after methane was passed through the catalyst. The efficiency of the catalysts was expressed in terms of methane conversion and hydrogen yield.

Methane conversion and hydrogen yield were calculated according to the following Eqs. (1) and (2):

$$CH_4 conversion (\%) = \frac{CH_{4in} - CH_{4out}}{CH_{4in}} \times 100\%$$
(1)

$$H_2 \text{ Yield}(\%) = \frac{\text{Moles of hydrogen produced}}{2 \times \text{mole of } CH_{4 \text{ in feed}}} \times 100\% \quad (2)$$

where the volume of CH_4 at the reactor inlet and outlet are represented by CH_{4in} , and CH_{4out} , accordingly.

The physicochemical characteristics of fresh catalysts and those tested in methane decomposition were studied by X-ray phase analysis (XRD), Brunauer-Emett-Taylor (BET), temperature-programmed hydrogen reduction (TPR-H₂), and Raman spectroscopy.

3. Results and discussion

The results of comparative activity in the methane decomposition of Fe_2O_3 -NiO/Al₂O₃ catalyst synthesized by capillary impregnation (Fe₂O₃-NiO/Al₂O₃(CI)) and solution combustion (Fe₂O₃-NiO/Al₂O₃(SC)) are shown in Fig. 2.

Fig. 2. Effect of reaction temperature on activity of Fe_2O_3 -NiO/Al_2O_3 (CI) and Fe_2O_3 -NiO/Al_2O_3 (SC) catalysts in decomposition of methane: conversion of methane (a), yield of hydrogen (b).

Fig. 3. Stability performance of catalysts in terms of CH₄ conversion at 750 °C.

Investigation of the activity of catalysts in the temperature range of 650–850 °C showed that on the Fe_2O_3 -NiO/Al₂O₃ (CI), the methane conversion and hydrogen yield increase in the temperature range of 650-800 °C from 90 to 94%, from 52 to 54%, respectively, passing through a maximum at 750 °C. A further increase in the reaction temperature to 850 °C leads to a decrease in the activity of the catalyst. A similar character is also observed for Fe₂O₃-NiO/Al₂O₃ (SC), but with lower catalytic activity. The highest methane conversion of 98% and hydrogen yield of 57% at a reaction temperature of 750 °C are observed for the Fe₂O₃-NiO/Al₂O₃ (CI) catalyst. However, for the catalyst Fe₂O₃-NiO/Al₂O₃ (CI) at 850 °C there is a sharp decrease in activity compared to Fe₂O₃-NiO/Al₂O₃ (SC).

Catalysts Fe_2O_3 -NiO/Al₂O₃ (CI) and Fe_2O_3 -NiO/Al₂O₃ (SC) were tested at a reaction temperature of 750 °C in methane decomposition for 150 min (Fig. 3). The conversion profiles showed that Fe_2O_3 -NiO/Al₂O₃ (CI) had an initial conversion of 57%, which decreased starting at 60 min and reached 47% at 150 min. Compared to Fe_2O_3 -NiO/Al₂O₃ (CI), the Fe_2O_3 -NiO/Al₂O₃ (SC) catalyst had a lower initial conversion of 52% however, the catalyst did not decrease its activity within 150 min.

The results of BET showed that the specific surface area of the catalysts did not differ much from each other. The specific surface of the catalyst prepared by capillary impregnation of Fe₂O₃-NiO/ Al₂O₃ (CI) is 89.7 m²/g, while the catalyst prepared by the combustion solution method Fe₂O₃-NiO/ Al₂O₃ (SC) is 94.6 m²/g.

X-Ray diffractions patterns of fresh catalysts are shown in Fig. 4.

The diffraction peaks at $2\theta = 30.4$, 37.4, 45.3° are mainly related to Fe₂O₃ (JCPDS, no. 39-1346).

Fig. 4. XRD patterns of fresh catalysts: $1 - Fe_2O_3$ -NiO/Al₂O₃ (CI); $2 - Fe_2O_3$ -NiO/Al₂O₃ (SC).

Characteristic peaks of the FeNi alloy (JCPDS, no. 38-0419) can be observed at $2\theta = 44.2$, 51.5 on the X-ray diffraction patterns of the catalysts, for the Fe₂O₃-NiO/Al₂O₃ (SC) catalyst with greater intensity. The absence of the peaks from the crystal lattice of the NiO suggests that the oxide in the synthesized catalysts is presented in the form of nanoparticles with sizes much smaller than the X-ray diffraction sensitivity threshold for the coherent scattering area size (<100 Å).

The reduction characteristics of Fe_2O_3 -NiO/ Al_2O_3 (CI), Fe_2O_3 -NiO/ Al_2O_3 (SC), and monometallic Fe_2O_3/Al_2O_3 (CI), NiO/ Al_2O_3 (CI) catalysts were studied by the TPR-H₂ method. The results are shown in Fig. 5.

The TPR profile of Ni/ γ -Al₂O₃ (CI) shows four peaks with temperature maxima at T¹_{max} = 487 °C, (hydrogen amount A = 13 µmol/gKt), T²_{max} = 652 °C, (A = 369 µmol/gKt), T³_{max} = 740 °C, (A = 44 µmol/gKt) and T⁴_{max} = 780 °C, (A = 135 µmol/ gKt). The peak at T¹_{max} refers to the reduction of nickel cations in the composition of NiO particles not bound to the support [15]. Peaks T²_{max} and

Fig. 5. TPR profile of catalysts.

 T_{max}^3 refer to the reduction of nickel oxide particles characterized by "weak" and "strong" metal-carrier interactions [16]. The peak with a maximum at $T_{max}^4 = 780$ °C is associated with the presence of dispersed spinel-like forms of NiAl₂O₄ in the sample [17].

The TPR profile of Fe/Al₂O₃ (CI) shows an intense peak with a temperature maximum at T^{1}_{max} = 434 °C, (A = 342 µmol/gKt). In addition, there are low-intensity peaks at T^{2}_{max} = 660 °C (A = 10 µmol/gKt), T^{3}_{max} = 717 °C (A = 2 µmol/gKt) and T^{4}_{max} = 790 °C (A = 9 µmol/gKt). The peak at T^{1}_{max} = 434 °C is associated with the reduction of Fe₂O₃ to Fe₃O₄ [18]. Peaks in the region of 650–720 °C can be attributed to the reduction of oxide Fe₃O₄ to FeO. The presence of several peaks may indicate the interaction of the metal-carrier, characterized by different strengths. The peak at T^{4}_{max} = 790 °C can be associated with the presence of the hard-to-recover FeAl₂O₄ phase.

The TPR profiles of bimetallic catalysts differ from those of monometallic ones. The profiles of Fe₂O₃-NiO/ γ -Al₂O₃ (CI) and Fe₂O₃-NiO/ γ -Al₂O₃ (SC) catalysts are of the same character, there are three peaks with different intensities. The TPR profile of Fe₂O₃-NiO/ γ -Al₂O₃ (CI) has peaks with maxima T¹_{max} = 413 °C (A = 668 µmol/gKt), T²_{max} = 514 °C (A = 1162 µmol/gKt and T³_{max} = 710 °C (A = 127 µmol/gKt). The TPR profile of Fe₂O₃-NiO/ γ -Al₂O₃ (SC) has three peaks too with maxima T¹_{max} = 415 °C (A = 504 µmol/gKt), T²_{max} = 526 °C (A = 1326 µmol/gKt) and T³_{max} = 795 °C (A=164 µmol/gKt).

The first peak can be attributed to the reduction of Fe₂O₃ unbound to the support. Compared to a monometallic catalyst, on bimetallic catalysts the temperature maximum related to the reduction of Fe₂O₃ shifts to the low-temperature region from 434 to 413–415 °C. Compared to Fe₂O₃-NiO/ γ -Al₂O₃ (SC) on the TPR profile of the Fe₂O₃-NiO/ γ - Al_2O_3 (CI) catalyst, the intensity of the peak related to the reduction of Fe_2O_3 is higher, which indicates a high content of Fe_2O_3 unbound to the support. A new peak appears on the TPR profile of bimetallic catalysts with maxima at 514 and 526 °C, which are not observed on the TPR profile of monometallic catalysts. The presence of this peak may indicate the formation of the FeNi alloy, these data are confirmed by the XRD results (Fig. 4). The intensity of this peak on the Fe₂O₃-NiO/ γ -Al₂O₃ (SC) catalyst is higher compared to Fe_2O_3 -NiO/ γ -Al₂O₃ (CI), which may indicate a larger amount of this phase on the Fe₂O₃-NiO/ γ -Al₂O₃ (SC) compared

with Fe₂O₃-NiO/ γ -Al₂O₃ (CI). The peak at T³_{max} = 795 °C (A = 164 µmol/g) can be attributed to the reduction of aluminates, possibly FeAl₂O₄, since the reduction of NiAl₂O₄ is observed at a lower temperature (T⁴_{max} = 780 °C).

Compared to Fe_2O_3 -NiO/ γ -Al₂O₃ (CI) on the Fe_2O_3 -NiO/ γ -Al₂O₃ (SC) catalyst, the intensity of the peak related to the reduction of aluminates is higher, which indicates a higher content of aluminates.

Therefore, the most stable activity in the decomposition of methane of the catalyst Fe_2O_3 -NiO/ γ -Al₂O₃ (SC) in comparison with Fe_2O_3 -NiO/ γ -Al₂O₃ (CI) is possibly associated with a high content of NiAl₂O₄ or FeAl₂O₄ solid solutions. It is known [19] that the reduction of NiAl₂O₄ spinel produces finely dispersed nickel (5–20 nm) stabilized in an Al₂O₃ matrix, which is highly active in the methane dissociation reaction. At high temperatures, spinel will be reduced to finely dispersed nickel by atomic hydrogen, which is formed during the dissociation of methane. Therefore, this property provides good catalytic activity at high temperatures as well as caking resistance.

The carbon structure was analyzed using Raman spectroscopy. Figure 6 shows the spectra of the catalysts tested in the decomposition of methane at 750 °C for 150 min.

Band G, located at a frequency of 1572 cm⁻¹, refers to the vibration of graphite in the C-C plane. The peak at 1357 cm⁻¹ is called the D band derived from amorphous carbon or imperfect graphite. It is known [20] that the D band on the Raman spectrum is usually very weak in graphite and high quality graphene. The intensity of the D band is directly proportional to the level of defects in the sample. The results of Raman spectroscopy show a high intensity of the bands in the range of 500–1000 cm⁻¹ and the D band in the Fe₂O₃-NiO/ γ -Al₂O₃ (SC) spectra, which indicates the defectiveness of the deposited carbon. Therefore, in the areas of Fe₂O₃- NiO/γ -Al₂O₃ (SC) not covered with carbon, methane will decompose until all catalyst particles are completely covered with carbon.

The relative intensity ratio in the form of I_D/I_G

Fig. 6. Raman spectra of Fe_2O_3 -NiO/ γ -Al₂O₃ (SC) and Fe_2O_3 -NiO/ γ -Al₂O₃ (CI) after the methane decomposition.

is used to quantify the degree of graphitization of deposited carbon [21]. Namely, as the degree of graphitization increases, the I_D/I_G ratio decreases. The I_D , I_G , I_{2D} intensities and calculated ratios are shown in Table. The I_D/I_G value of deposited carbon on Fe₂O₃-NiO (CI) is 0.75, on Fe₂O₃-NiO (SC) is 0.58. Higher I_D/I_G values indicate a lower degree of graphitization of deposited carbon, which is consistent with the results. The 2D band (~2700 cm⁻¹) is characteristic of structures with several and several layers of graphene and graphite. Similar spectra are found in the literature for multilayer graphene and graphite [22, 23]. It is known [24] that the ratio between the intensities of the 2D peak (I_{2D}) and the G peak (I_G) gives an estimate of the number of layers. The I_{2D}/I_G value of deposited carbon on Fe₂O₃-NiO/ γ -Al₂O₃ (CI) is 0.56, on Fe₂O₃-NiO/ γ -Al₂O₃ (SC) is 0.50. According to [25], the ratio $I_{2D}/I_G = 0.56$ indicates 4 or 5 graphene layers, $I_{2D}/I_G = 0.50$ indicates 6 or 7 graphene layers.

From the results of Raman spectroscopy, it follows that after testing the catalysts Fe_2O_3 -NiO/ γ -Al_2O_3 (CI) and Fe_2O_3 -NiO/ γ -Al_2O_3 (SC) in the decomposition of methane at 750 °C, deposition of graphene-like carbon is observed on the catalysts. On the Fe₂O₃-NiO/ γ -Al₂O₃ (CI) catalyst, 4–5 layer graphene is formed on Fe₂O₃-NiO/ γ -Al₂O₃ (SC)-6-7 layer graphene.

Table								
Raman	intensities	for	I _D ,	I _G ,	I _{2D} ,	I_D/I_G	and	I_{2D}/I_G

Sample	Ir	Intensity (a.u)		Intensity (a.u)		I_D/I_G	I_{2D}/I_G	Remarks
	ID	I_G	I_{2D}	-				
Fe ₂ O ₃ -NiO/γ-Al ₂ O ₃ (CI)	369	494	279	0.75	0.56	4 or 5 layers of graphene		
Fe ₂ O ₃ -NiO/γ-Al ₂ O ₃ (SC)	368	635	319	0.58	0.50	6 or 7 layers of graphene		

Eurasian Chemico-Technological Journal 24 (2022) 221-227

4. Conclusions

In order to develop an efficient catalyst for hydrogen production by methane decomposition, the effect of synthesis methods, such as capillary impregnation and solution combustion, on the activity of the Fe₂O₃-NiO/ γ -Al₂O₃ catalyst was studied. The results of the catalytic efficiency tests showed that the activity and stability of the catalyst can be controlled by preparation techniques. According to the results of the studies, the synthesis of the Fe_2O_3 -NiO/ γ -Al₂O₃ catalyst by capillary impregnation increases the proportion of iron oxide not bound to the support, which leads to an increase in its activity in the decomposition of methane at relatively low temperatures. The preparation of Fe_2O_3 -NiO/ γ -Al₂O₃ by the solution combustion method leads to the formation of FeNi and FeAl₂O₄, which provided good catalytic activity at high temperatures due to the high dispersion of active metals.

The Fe₂O₃-NiO/ γ -Al₂O₃ catalyst synthesized by the solution combustion method demonstrated good activity with a hydrogen yield of 52% within 150 min of the reaction without any deactivation. According to the results of Raman spectroscopy, graphene-like carbon was obtained on the surface of the catalysts. On the catalyst of Fe₂O₃-NiO/ γ -Al₂O₃ (CI) synthesized by capillary impregnation, 4–5 layer graphene on Fe₂O₃-NiO/ γ -Al₂O₃ (SC)-6-7 layer graphene is formed.

Acknowledgments

This work was supported by a grant from the Ministry of Education and Science of the Republic of Kazakhstan № AP08855564 "Obtaining hydrogen and nanocarbon from natural gas – methane".

References

- D.D.T. Ferraren-De Cagalitan, M.L.S. Abundo, *Renew. Sust. Energy Rev.* 151 (2021) 111413. DOI: 10.1016/j.rser.2021.111413
- [2]. G.E. Ergazieva, N. Makayeva, Z. Shaimerden, S.O. Soloviev, M. Telbayeva, E. Akkazin, F. Ahmetova, *Bull. Chem. React. Eng. Catal.* 17 (2022). DOI: 10.9767/bcrec.17.1.12174.1-12
- [3]. H.F. Abbas, W.M.A. Wan Daud, *Int. J. Hydrogen Energy* 35 (2010) 1160–1190. DOI: 10.1016/j. ijhydene.2009.11.036
- [4]. Z. Fan, W. Weng, J. Zhou, D. Gu, W. Xiao, J. Energy Chem. 58 (2021) 415–430. DOI: 10.1016/j.jechem.2020.10.049

- [5]. K. Murata, M. Inaba, M. Saito, I. Takahara, N. Mimura, J. Jpn. Petrol. Inst. 46 (2003). DOI: 10.1627/JPI.46.196
- [6]. A.S. Al-Fatesh, A.A. Ibrahim, A.M. AlSharekh, F.S. Alqahtani, S.O. Kasim, A.H. Fakeeha, *Egypt. J. Pet.* 27 (2018) 1221–1225 DOI: 10.1016/J.EJPE.2018.05.004
- J. Chen, X. Zhou, L. Cao, Y. Li, *Stud. Surf. Sci. Catal.* 147 (2004) 73–78. DOI: 10.1016/S0167-2991(04)80030-2
- [8]. J.L. Pinilla, R. Utrilla, R.K. Karn, I. Suelves, M.J. Lazaro, R. Moliner, A.B. Garcia, J.N. Rouzaud, *Int. J. Hydrogen Energy* 36 (2011) 7832–7843. DOI: 10.1016/j.ijhydene.2011.01.184
- [9]. L.B. Avdeeva, T.V. Reshetenko, Z.R. Ismagilov, V.A. Likholobov, *Appl. Catal. A: Gen.* 228 (2002) 53–63. DOI: 10.1016/S0926-860X(01)00959-0
- [10]. D. Torres, J.L. Pinilla, M.J. Lazaro, R. Moliner, I. Suelves, *Int. J. Hydrogen Energy* 39 (2014) 3698–3709. DOI: 10.1016/J. IJHYDENE.2013.12.127
- [11]. M. Pudukudy, Z. Yaakob, Z.S. Akmal, *Appl. Surf. Sci.* 330 (2015) 4185–430. DOI: 10.1016/J. APSUSC.2015.01.032
- [12]. G. Yergaziyeva, N. Makayeva, A. Abdisattar, M. Yeleuov, S. Soloviev, M. Anissova, A. Taurbekov, K. Dossumov, E. Akkazin, C. Daulbayev, *Chem. Pap.* (2022). DOI: 10.1007/ s11696-022-02420-9
- [13]. K. Dossumov, G.E. Ergazieva, B.T. Ermagambet, M.M. Mambetova, Z. Kassenova, *Russ. J. Phys. Chem.* 94 (2020) 880–882. DOI: 10.1134/S0036024420040020
- [14]. G. Yergaziyeva, K. Dossumov, M. Mambetova, P.Y. Strizhak, H. Kurokawa, B. Baizhomartov, *Chem. Eng. Technol.* 44 (2021) 1890–1899. DOI: 10.1002/ceat.202100112
- [15]. C.H. Campos, P. Osorio-Vargas, N. Flores-González, J.L.G. Fierro, P. Reyes, *Catal. Lett.* 146 (2016) 433–441. DOI: 10.1007/s10562-015-1649-6
- [16]. S. Pengpanich, V. Meeyoo, T. Rirksomboon, *Catal. Today* 93–95 (2004) 95–105. DOI: 10.1016/j.cattod.2004.06.079
- [17]. A. Horváth, M. Németh, A. Beck, B. Maróti, G. Sáfrán, G. Pantaleo, L.F. Liotta, A.M. Venezia, V. La Parola, *Appl. Catal. A: Gen.* 621 (2021) 118174. DOI: 10.1016/j.apcata.2021.118174
- [18]. J. Zhang, L. Jin, Y. Li, H. Hu, Int. J. Hydrogen Energy 38 (2013) 3937–3947. DOI: 10.1016/j. ijhydene.2013.01.105
- [19]. S.O. Soloviev, I.V. Gubareni, S.M. Orlyk, *Theor. Exp. Chem.* 54 (2018) 293–315. DOI: 10.1007/s11237-018-9575-5
- [20]. H. Nishii, D. Miyamoto, Y. Umeda, H. Hamaguchi, M. Suzuki, T. Tanimoto, *Appl.*

Surf. Sci. 473 (2019) 291–297. DOI: 10.1016/j. apsusc.2018.12.073

- [21]. Y. Yu, F. Fu, L. Shang, Y. Cheng, Z. Gu, Y. Zhao, Adv. Mater. 29 (2017) 1605765. DOI: 10.1002/adma.201605765
- [22]. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, P.C. Eklund, *Nano Lett.* 6 (2006) 2667–2673. DOI: 10.1021/nl061420a53
- [23]. E. Sallah, W. Al-Shatty, C. Pleydell-Pearce, A.J. London, C. Smith, *Carbon Trends* 8 (2022) 100174. DOI: 10.1016/j.cartre.2022.100174
- [24]. N.K. Memon, S.D. Tse, J.F. Al-Sharab, H. Yamaguchi, A.-M. Goncalves, B.H. Kear, Y.

Jaluria, E.Y. Andrei, M. Chhowalla, *Carbon* 49 (2011) 5064–5070. DOI: 10.1016/j. carbon.2011.07.024

- [25]. U. Kalsoom, M.S. Rafique, S. Shahzadi, K. Fatima, N.R. ShaheeN, *Mater. Sci.-Poland* 35 (2018) 687–693. DOI: 10.1515/msp-2017-0099
- [26]. M. Yeleuov, C. Seidl, T. Temirgaliyeva, A. Taurbekov, N. Prikhodko, B. Lesbayev, F. Sultanov, C. Daulbayev, S. Kumekov, *Energies* 13 (2020) 4943. DOI: 10.3390/en13184943