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Abstract

Today’s 3D printers allow the creation of very advanced structures from 
various materials, starting from simple plastics up to metal alloys. Since the 
printing time and amount of material used to create structures are considered 
very important in terms of cost and energy consumption, it is better to 
optimize structures for that particular application taking into account all the 
conditions. In the current work, U-Net convolutional neural network-based 
topology optimization method (TO) that allows to reduce the material usage 
and eventually reduces the cost of 3D printing is introduced. The results 
showed that the accuracy of the method is highly reliable and can be used 
for designing various 3D printable structures and it applies to any type of 
materials since properties of materials can be included in TO.
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1. Introduction

With the rise of 3D printing technologies, pos-
sibilities for optimization of structures – made of 
different materials, such as plastics, composites, 
metals and alloys – moved to the next level [1]. As 
shown in Fig. 1, 3D printers are highly efficient in 
reducing material cost, due to their layered depo-
sition of material approach compared to the tradi-
tional approach [2]. Although, when the latter is 
coupled with a mathematical method – topology 
optimization (TO), the reduction of material usage 
is further decreased, while keeping the stiffness of 
3D printed structures at a required level.

TO is a method for optimizing the distribution 
of material within a given space for a given set of 
loads and boundary conditions. The purpose of TO 
is to determine the optimal distribution of the ma-

terial in the design area, thus reducing the weight 
of the structure and material cost (i.e. filament cost) 
during 3D printing. This method is based on repeat-
ed steps of design analysis and updating [3], which 
finally provides the best layout possible. Although, 
when the design of solid structures is complicated 
and has multiple initial and boundary conditions, 
the computational time of TO drastically increases 
and it takes to get optimized results up to sever-
al hours. Such computational difficulty is mainly 
due to the iterative nature of solvers designed for 
a large system of linear equations obtained from 
finite element analysis [4].

There are several methods to improve the com-
putational time of TO. One way is to apply parallel 
computing based on multi-core central processing 
units (CPUs) [5–7], and graphics processing units 
(GPU) [8–10]. Thus, the computationally expen-
sive portions of TO algorithm, especially the parts 
related to finite element analysis (FEA), are run in 
parallel among the cores of several CPU or GPU 
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processors. Such an approach was well-known 
and applied intensively until artificial intelligence 
(AI) methods started to advance. Thus, in the latest 
trends, we can notice that AI technologies and open 
source AI platforms, machine learning (ML) meth-
ods in advanced manufacturing processes have 
expanded significantly [11, 12]. This trend is also 
noticeable in the field of topology optimization, 
where, with the help of trained neural networks, 
structural topology and properties such as strength, 
modulus of elasticity, strain, and stress fields are 
predicted [13–15]. In the work [14], a convolution-
al neural network (CNN) was utilized to train the 
intermediate topology layouts obtained by SIMP-
based TO to solve a solid mechanics problem. To 
forecast the optimum structures using AI method, 
the TO solver was stopped at an intermediate point 
after a few iterations and further fed into the CNN 
model. Comparing the trained CNN model to the 
conventional SIMP method, it was discovered that 
the trained CNN model could predict the final to-
pology optimized structures up to 20 times faster 
with a few uncommon pixel-wise alterations.

Wang et al. [15] introduced a CNN with per-
ceptible generalization ability for TO. Encoding 
and decoding components of the neural network 
that was proposed by the authors enable down- 
and up-sampling operations. They compared their 
results with SIMP method and showed that they 
can achieve about 96% accuracy in predicting op-
timized topology with the increasing number of 
CNN training samples.

 

Fig. 1. Additive manufacturing vs subtractive manufacturing [2].

Nie et al. [16] proposed a new data-driven TO 
model, named TopologyGAN, which uses physi-
cal fields computed in the original material domain 
as inputs to a conditional generative adversari-
al network (cGAN) generator. They showed that 
TopologyGAN is much more effective in reduc-
ing the mean square error and mean absolute er-
ror compared to cGAN. In the generator, they also 
introduced a hybrid network, particularly, U-SE 
(Squeeze-and-Excitation)-ResNet. The results 
showed good accuracy but some structures were 
unphysical, therefore their model needed some im-
provements at the neural network level.

In the current work, we develop a CNN using 
U-net and test them for predicting the topology of 
a cantilever beam. We compare the computation-
al cost of the proposed method compared to the 
conventional SIMP method. We also consider the 
proposed TO approach, in terms of reducing the 
material cost for 3D printing applications. Thus, 
the further sections are developed in the following 
order: firstly, we briefly discuss TO and its role in 
3D printable design samples. Furthermore, we in-
troduce CNN method used in the current study and 
continue with the results and discussion section. 
Lastly, conclusive remarks are provided and future 
works are discussed. 

2. Topology optimization and structural design

2.1. General knowledge

Topology optimization is usually achieved 
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through numerical calculations, where the design 
domain is discretized by finite elements. In oth-
er words, the finite element method (FEM) is the 
main numerical tool. FEM-based topological op-
timization is classified as Isotropic Solid/Empty 
(ISE), Anisotropic Solid/Empty (ASE), and Isotro-
pic Solid/Empty/Porous (ISEP) topologies. Among 
them, the most practical class is ISE, where FEM 
elements are considered either filled with a select-
ed isotropic material or void [17, 18]. There are 
several works that compare different methods in 
terms of computational efficiency [3, 18‒22]. The 
use of solid structures based on isotropic materials 
is widespread in all sectors of the manufacturing 
and construction industries. Similarly, 3D printing 
of structures using a single material is the most re-
liable and practical, because a stronger bond be-
tween printed layers is easier to achieve compared 
to a multi-material approach.

TO problem can be described as a search for a 
material distribution that minimizes the objective 
function F under a volume constraint Gi. The dis-
tribution of the material is described by a variable 
density ρ(x), which can take on the value 0 (void) 
or 1 (solid material) at any point in the design 
plane Ω. The optimization problem can be written 
in mathematical form as [3]: 

min� 5              :� � ������� �� � �� ������� ������
�

  subject to        :����� � � ������ � ���
� � �

                   :�������� �� � �� � � ��� ��
                   :���� � ������� �� � �

where u corresponds to the state equation. For sim-
plicity of further notation, it can be assumed that 
the objective function can be calculated as an in-
tegral over a local function f(u(ρ),ρ). Also, since 
in real conditions there are several restrictions, M 
additional restrictions are included in the general 
formulation.

So far, several methods have been developed 
for solving TO problems: the density approach, the 
level-set approach, the phase field approach, and 
the discrete approaches [3]. Several papers compare 
the advantages and disadvantages of each of these 
methods in terms of their computational efficiency 
[5–8]. Among them, the density approach method, 
particularly SIMP method (solid penialized isotro-
pic material) is commonly used by researchers/en-
gineers and it is now commonly used in commer-

where C – compliance; U and F – global displace-
ment and force vectors; K – global stiffness matrix; 
ue and ke – elements displacement and stiffness 
vectors; x – design variable vector; xmin – minimum 
relative densities; N – number of FEA elements, 
p – penalty factor, V(x) and V0 – volume of mate-
rial and design domain, and f – volume fraction of 
material. The optimization problem can be solved 
using various iterative methods such as Optimal-
ity Criteria (OC) method, Sequential Linear Pro-
gramming (SLP) method, or Moving Asymptotes 
(MMA) method [24].

Within the last decade, TO method has been sig-
nificantly improved [3], and its application to solve 
complex problems has expanded significantly [25]. 
Various multi-physics problems such as enhancing 
heat transfer processes [26, 27], reducing liquid 
and solid interactions [28], optimizing the thermo-
elastic behaviour of structures [29], and improving 
the geometry of electro-thermal mechanical drives 
[30, 31] are addressed using TO approaches, where 
given geometries are numerically discretized in 2D 
or 3D domains and optimized using TO for better 
performance. Although, the application of TO on 
such problems with multiple interacting physical 
properties in 2D or 3D domains leads to a notice-
able increase in computational complexity, and 
hence an increase in the computation time of TO 
analysis. Therefore, in the current work, we ad-
dress this use and try to improve it using machine 
learning methods.

2.2. Design example for 3D printing

As an example, in the current research work, 
we decided to study the TO of the Messerschmitt-
Bölkow-Blohm (MBB) beam as shown in Fig. 2. In 
fact, this is one of the well-known structures that 

(1)

min� 3            :���� � ���� � ∑ ����� ������������
subject to       :������ � �

          :�� � �
          :� � ���� � � � � (2)

cial software such as SolidWorks, COMSOL and 
ANSYS. Thus, a common TO problem based on 
the SIMP approach, where the goal is to minimize 
the degree of conformity (i.e., maximize the rigidi-
ty of the design), can be written as [23]:
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are previously studied in most of the works that in-
clude machine learning studies [14, 16, 17]. In this 
example, continuous fiber angle optimization was 
considered together with TO so that 3D printed 
structure has a strength depending on the printing 
direction. The structure can be further tested using 
a mechanical machine as shown in Fig. 3 [32]. In 
the particular example, the volume fraction f was 
set to 0.4, meaning 60% of the material compared 
to the original MBB beam was saved. It should be 
noted that, in the current studies, the main purpose 
is to use ML methods for acceleration of TO, and 
reducing the computational time. Furthermore, 
we discuss the material cost reduction that can be 
achieved by TO approach.

Here, we consider the half of MBB beam due to 
its symmetricity and apply TO on it to develop an 

 

Fig. 2. Messerschmitt-Bölkow-Blohm (MBB) beam: 
a) ‒ boundary conditions continuous fiber angle 
optimization; b) ‒ continuous fiber angle optimization; 
c) fixed horizontal print direction [32].

optimized material distribution for given boundary 
conditions. As can be seen from a) part of Fig. 4, 
there is a force (F) applied to the beam, while it is 
fixed at the right lower corner. The results obtained 
from TO using SIMP method show that the overall 
contour/shape of the possible structure is achieved 
after 15 iterations, while an additional 48 iterations 
are required to obtain the final finely tuned binary 
result. In other words, it is clear how the final struc-
ture would eventually get shaped after 15 iterations, 
but the method further has to go through more itera-
tions (i.e. up to 60) to get the final reduced material 
distribution. According to our studies based on an 
open-source SIMP algorithm from [23], for a com-
puter with Intel Core i7-4510 at 2.00 Ghz, the time 
for one iteration is around 0.88 sec. In total, to run 
80 iterations to get the final TO, the overall compu-
tational time is about 70.4 sec. Once again, it should 
be mentioned that the mesh size in the current study 
is 120×40, which is 4800 FEM elements only. Usu-
ally, for complex structures, element size might go 
up to several thousand and millions. Therefore, the 
importance of accelerating the computational time 
is actual and needs proper studies.

 
Fig. 3. Testing of 3D printed structure [32].

 

 

Fig. 4. Messerschmitt-Bölkow-Blohm (MBB) beam: (а) ‒ design area and boundary conditions; (b) ‒ intermediate 
and final TO results based on the SIMP method.

(a) (b)
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To accelerate this process of TO to obtain ma-
terial distribution for a given boundary and initial 
constraints in a shorter time, the authors propose 
to use a machine learning algorithm using neural 
networks. In such a way, it is possible to improve 
the overall duration from designing structures to 
3D printing process.

3. Machine learning approach

3.1. Main idea

U-net is a special type of convolutional neural 
network, which was introduced by the Faculty of 
Computer Science at the University of Freiburg, 
and is designed to solve problems related to im-
age segmentation. It consists of two main stages: 
convolution and development. At each step of the 
first stage (convolution), the model generates N re-
duced (compressed or convolved) filtered versions 
of the image, and at each step, the number of fil-
ters will be doubled. The subsequent stage (sweep) 
is the inverse version of the convolution. At each 
step of this stage, the images will be increased in 
size and filtered, with the initial number of filters 
corresponding to the final number of filters of the 
1st stage, and the number of filters is halved at each 
step. The key action in this model is to store and 
transfer intermediate images from the convolution 
stage to the unwrapping stage, with the result of 
the first convolution step being used in the last un-
wrapping step, the second in the penultimate one, 
and so on. The final solution to this problem is an 
image of the same size as the original one.

3.2. Intermediate stages, layers

As mentioned above, U-net is a special type 
of CNN, which consists of the following layers: 
convolution, pooling, dropout and up-sampling. 
The convolutional layer is a set of maps (a set of 
matrices) with trainable ts (in different sources it 
is called differently: a scanning core or a synaptic 
core), which have a small receptive field but pass 
through the entire depth of the input volume. With-
in the framework of this experiment, at each con-
volution step, the number of filters with the ReLU 
(Rectified Linear Unit) activation function will in-
crease by two, with an initial number of sixteen. 
Further, at each sweep step, the number of filters 
will be halved. The last set of sixteen filtered im-
ages will be filtered one last time with the sigmoid 
activation function.

(3)

(4)

The dropout layer is a regularization technique 
used in artificial neural networks to prevent over-
fitting. Essentially, it zeros out random values in 
the input dataset and increases the efficiency of 
machine learning algorithms.

(5)

where f’(x,y) – final matrix, f(x,y) – initial matrix.

4. Architecture of experiment, training data 
and evaluation methods

4.1. First stage: Convolution

The architecture of the first stage corresponds 
to the usual architecture of a convolutional neural 
network. It consists of several alternating steps that 
conditionally indicate the depth of the model. The 
input data of the first step are based on two imag-
es: N-th iteration of the SIMP and the difference 

��� � ���, with ����, otherwise 0

���� – probability conversation matrix 

��	– initial matrix before dropout 

��� – matrix after dropout 

A pooling layer is a selective sampling pro-
cess that aims to reduce the resolution of an input 
matrix. Within the framework of this experiment, 
horizontal and vertical steps equal to two (N = 2, 
M = 2) was used to select the area, and the maxi-
mum value of each area was assigned to the result-
ing matrix.

Up-sampling layer is the process of increasing 
the width and length of the input matrix by N and 
M times, respectively. In experiments, this matrix 
was filled in according to the following formula, 
where N = 2, M = 2:
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between N-th and the previous image. Each step 
starts by applying two reconvolutions with 3×3 
kernels with an increasing number of filters and a 
ReLU activation function, with the intermediate 
dropout layer of 10%. This is followed by the layer 
of reduction with a step of 2×2. In this experiment, 
the initial number of filters was taken as 16 and for 
each step, it was doubled. Also, the final result of 
each step is saved for transfer to the next stage.

4.2. Second stage: Deconvolution

The deconvolution stage (second stage) is the 
inverse of the first stage and differs in that as in-
put data for each step, in addition to the received 
data, the data previously stored in the convolution 
stage is used. At each step, two 3×3 reconvolutions 
occur with a fitting number of filters and ReLU 
activation function, with the intermediate dropout 
layer of 10%. This is followed by a layer of mag-
nification with a factor of two vertically and hor-
izontally. After the 4th, final iteration, the result 
obtained passes through the last convolution layer 
with a single filter and a sigmoid activation func-
tion. After rounding the result, a binary image with 
the original resolution is obtained, where 0 corre-
sponds to the void, and 1 to the material.

4.3. Training data

To implement the above model, images from 
iterations of the SIMP model along with the ex-
pected result are needed. Synthetic data created by 
Sosnovik and Oseledet [14], using an automatic 
2D and 3D topology generator – an open-source 
SIMP Topy algorithm [33] – was used for train-
ing the CNN. In the end, 10000 imaginary samples 
were generated and used, and 100 SIMP iterations 
were run for each given boundary and initial con-
ditions, along with the expected result. In Table 1, 
three different samples of input data, particularly, 
N-th iteration, the gradient (difference of N-th and 
(N-1)th iterations), and the final topology layout 
are shown. The grid size of the samples generated 
is 40×40 as can be noted in Table 1, and each to-
pology sample is a tensor of 100×40×40, based on 
the grid size and the number of iterations, which 
is 100.

4.5. Evaluation method

This evaluation method checks the identity of 
each pixel in the image. Conventionally, it is de-

(6)

The coefficient of Jaccard or the intersec-
tion-to-union ratio is used to calculate the level of 
overlap between the predicted image and the true 
image.

(7)

Due to the fact that there are only two classes of 
interest, the original formula can be modified to the 
following view:

(8)

(9)

In the scope of this experiment, it will measure 
how much predicted image differs from the desired 
image.

5. Results and discussions

At the initial stage of the study, two experiments 
are carried out to determine the effect of depth on 
the CNN model. Here, depth means the number of 
layers in the neural network. To fully characterize 

���� �� � |� � �|
|� � �|

In all of the above formulas, ωtp is the number 
of instances of class t predicted as class p, and nx 
this is the total number of instances of class x in the 
original image.

Mean absolute error (MAE) is also used to eval-
uate the accuracy of the model. MAE is a measure 
of the error difference between two observations 
that reflect the same phenomena.

��� � 1
��|���� � �����|

�

���
� 1
�� 1

�
�

���
�|����� � ������|
�

���

noted by β and given that each pixel of the image 
has a set of values consisting of two digits (zero to 
indicate emptiness and one to indicate material). 
Thus, binary accuracy is calculated according to 
the formula:
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Table 1 
Input data: samples obtained SIMP for Nth iteration, gradient and final topology 

for given set of boundary and initial conditions

N-th iteration of SIMP Gradient Final topology

Sample 1

Sample 2

     

     

Table 2 
Initial parameters of the model

No. Distribution Depth Optimizer Number of filters
1 Uniform [1-100] 3

Adam optimization 
algorithm

16, 32, 64, 64, 32, 16
2 P (λ = 5) 3 16, 32, 64, 64, 32, 16
3 P (λ = 10) 3 16, 32, 64, 64, 32, 16
4 P (λ = 30) 3 16, 32, 64, 64, 32, 16
5 Uniform [1-100] 4 16, 32, 64, 128, 128, 64, 32, 16
6 P (λ = 5) 4 16, 32, 64, 128, 128, 64, 32, 16
7 P (λ = 10) 4 16, 32, 64, 128, 128, 64, 32, 16
8 P (λ = 30) 4 16, 32, 64, 128, 128, 64, 32, 16

the problem of TO under consideration, two differ-
ent depths with different sizes are studied: in the 
first experiment, the depth is taken to be 3, while in 
the second one, a maximum depth is set to 4. The 
maximum depth is limited by the image resolution 
and it is one unit less than the minimum logarithm 
of the resolution to the base of two. For this case 
(40×40), this value is equal to four.

Also, each experiment has four sections, where 
the effectiveness of the choice of initial data is also 
investigated. To run the experiment, along with a 
uniform distribution, the Poisson distribution is 
also used. It should be noted that the Poisson dis-
tribution is taken with three different coefficients 
P (λ = 5), P (λ = 10) and P (λ = 30), and experi-
ments are carried out for each coefficient. Table 2 

gives the main initial parameters of all models. As 
can be seen from Table 2, 8 experiments are carried 
out, 4 experiments with a depth of 3, and another 4 
experiments with a depth of 4. Adam optimization 
algorithm is used in all experiments to update the 
learning rate of each network weight individual-
ly. The number of filters is also provided in Table 
2, and as explained above they are doubled at the 
convolution stage and halved at the sweep stage.

Thus, the initial parameters for all experiments, 
as well as which data are used, and how the mod-
el is built are presented in Table 2. As a result, 8 
different experiment results from 8 different CNN 
are received. Each model is evaluated by compar-
ing it with different SIMP iterations. Thus, in this 
experiment, SIMP iterations from 5th to 80th, with 
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an interval of 5 iterations, are selected as shown 
in Tables 3 and 4. To obtain a satisfactory aver-
age accuracy of 94%, 5/10 iterations are sufficient. 
Summing up the intermediate results, it can be not-
ed that each of these iterations is tested using the 
presented CNN model, particularly U-net model.

Thus, the results of the first 4 experiments are 
listed in Table 3, and the next four in Table 4 be-
low. Based on these tables, it can be concluded that 
the accuracy of the presented U-net model is high 
and it can be used to speed up SIMP method. It 
can also be noted that the minimum accuracy of the 
model equal to 94% was observed when using the 
fifth iteration. Compared to the previous studies 
by [15], our results are significantly accurate even 
using 10.000 datasets. Wang et al. [15] achieved 
an accuracy of 94% when the data set increased to 
20.000. Therefore, our current U-net model is sim-
pler in terms of neural network complexity, which 
requires less time to obtain the topology, is more 
accurate, and can performance better accuracy with 
less training data set. Moreover, the maximum ac-
curacy of 99% for material distribution is achieved 
using 80th iteration. At the same time, it should be 
emphasized that in this case, changing the depth 
of the model had a minimal effect on the results. 
This can be explained by the fact that the image 
has a small size, and increasing the depth from 3 
to 4 does not make a big difference, but increases 
the computational complexity and runtime of the 

Table 3 
Results of the experiment with the depth of three layers. P ‒ distribution, 
PP ‒ uniform distribution, P(x) ‒ Poisson distribution with coefficient x

No R 5 10 15 20 30 40 50 60 70 80
1 RR 93.6 95.5 96.2 96.7 97.2 97.7 97.7 97.9 98.1 98.2
2 P (λ = 5) 94.0 95.7 96.2 96.6 96.9 97.3 97.5 97.5 97.6 97.7
3 P (λ = 10) 94.1 95.5 96.1 96.5 96.8 97.2 97.4 97.5 97.5 97.6
4 P (λ = 30) 93.9 95.9 96.9 97.2 97.6 97.8 98.0 98.2 98.3 98.4

Table 4 
Results of the experiment with a depth of four layers. P ‒ distribution, PP ‒ uniform distribution, 

P(x) ‒ Poisson distribution with coefficient x

No R 5 10 15 20 30 40 50 60 70 80
1 RR 93.8 95.4 96.3 96.7 97.2 97.5 97.7 97.9 97.9 98.0
2 P (λ = 5) 94.1 95.6 95.9 96.4 96.9 97.1 97.3 97.5 97.6 97.5
3 P (λ = 10) 93.9 95.4 96.0 96.4 96.9 97.1 97.4 97.5 97.5 97.6
4 P (λ = 30) 93.5 95.7 96.5 96.7 97.4 97.7 97.9 98.1 98.2 98.2

CNN model. Therefore, U-net with depths of 3 (i.e. 
3 neural network layers) is better to be selected for 
faster and more accurate results. It should be noted 
that the computational time of the trained model 
here is less than 1 sec to get the final topology, 
and it is comparable to a single iteration of SIMP 
method.

The binary and MAE of the studies that are ob-
tained using (7)-(9) are 0.97 and 0.0312 respec-
tively. 

 

Fig. 5. Visualization of results.



J. Rasulzade et al. 285

Eurasian Chemico-Technological Journal 24 (2022) 277‒286

Moreover, the accuracy results of our studies us-
ing U-net based CNN are compared with previous 
results from the literature as shown in Table 5. The 
comparative analysis is based on the same number 
of training data samples, but different CNN depths 
that result in the accuracy. Thus, as can be seen 
from Table 5, our CNN has less number of layers, 
which directly correlates with faster computational 
time. In terms of accuracy, our result is better than 
Wang et al. [15] and comparable with the accuracy 
of Sosnovik and Oseledet [14].

Furthermore, Fig. 5 shows the expected results 
(bottom row) and calculation results (top row) of 
the presented model for three different cases for the 
material distribution using TO. It should be noted 
that the accuracy in all cases shown is greater than 
98%. Furthermore, such accurate results obtained 
using neural networks are also 3D printable and al-
low for acceleration of the development process of 
3D printable structures.

The TO is highly reliable and helps to reduce 
the material cost for 3D printing while keeping the 
mechanical or other properties of the structures at 
the same level as the original one. In the examples 
presented in Fig. 5, the volume fraction of the TO 
is set to 50% and it allows to reduce the material 
usage by 50%. Such an approach with the faster 
method of obtaining topologically optimized struc-
tures using CNN, can give many advantages to en-
gineers who use 3D printing technologies for the 
design and construction of advanced structures.

As a future work, the current CNN model will 
be extended and improved to develop structures in 
3D domain, that are highly required for the engi-
neering of advanced structures. In future work, the 
main goal will be to keep the computational time 
as low as possible, while increasing the accuracy 
and robustness of CNN models, including the ap-
plicability of such approaches in 3D printing.

Table 5 
Comparison of the current work with previous 

literature with the same number of training data

Model type Number 
of samples

Depth Accuracy

Our model 10.000 4 ~94 
(5th iteration)

CNN by Wang 
et al. [15] 10.000 8 ~89

CNN by 
Sosnovik and 
Oseledet [14]

10.000 6 ~ 92-95 
(5th iteration)

6. Conclusions

This work is devoted to the development of a 
method for accelerating the topology optimization 
(TO) of 3D printable structures. TO is a reliable 
mathematical method that allows for reducing ma-
terial usage while developing advanced structures 
that are 3D printable. Although, the computation-
al time of TO becomes costly with the increasing 
complexity of the boundary and initial conditions 
of the structural analysis. Here, a machine learning 
method based on a convolutional neural network 
(CNN) is proposed to accelerate the computational 
time. 

Thus, as an example, MBB beam is considered 
in the work. The model based on the U-Net archi-
tecture is presented to speed up the computation of 
the TO under consideration, which in turn, reduces 
the design and development time of the structure. 
The results of the study are checked for identity 
using the binary identity by comparing it with the 
conventional TO method SIMP. Hence, the results 
showed that CNN model could give 95% of accu-
racy for 10th iteration of SIMP. Furthermore, when 
they are compared at 80th iterations, the accuracy 
of CNN showed much more accurate results and it 
is about 98%. In addition, it is noticed that chang-
ing the depth from level 3 to level 4 does not im-
prove the accuracy of the experiment, although it 
increases the computational complexity and task 
execution time. Therefore, it is concluded that by 
keeping the depth as low as possible, still high-
ly accurate results can be achieved, but within a 
shorter time and it is very important in reducing 
the computational time. As shown in the results, 
the proposed method is highly accurate and can 
be used for the generation of optimized materi-
al distribution to various structures with a given 
boundary and initial conditions. Such structures 
are 3D printable, and highly efficient and less ma-
terial costly compared to structures developed us-
ing subtractive manufacturing. Using TO method 
developed here, the amount of material to develop 
structures can be significantly reduced while main-
taining its strength.     
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