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Abstract

Mathematical models  that describe the dependences of the critical temperatures 
of pitting formation of AISI 304, 08Kh18N10, AISI 321, 12Kh18N10T steels in 
model circulating waters with pH 4…8 and chloride concentrations from 350 to 
600 mg/l on their chemical composition and structure have been developed. They 
are based on linear squares regressions and on a feed-forward neural network for a 
reduced feature numbers. Using the developed mathematical models, it was found 
that the critical pitting temperatures of these steels increase with an increase in 
the pH of the circulating water, the amount of oxides up to 3.95 μm in size, the 
average distance between titanium nitrides, the Cr content and a decrease in the 
concentration of chlorides in the circulating waters, the average distance between 
oxides and average austenite grain diameter. At the same time, it was found that 
the geometric dimensions of the steel structure most intensively affect their pitting 
resistance in circulating waters, and the effect of their chemical composition is 
minimal and is determined by the amount of Cr, which contributes to an increase in 
the pitting resistance of steels, probably increasing the solubility of nitrogen in the 
austenite solid solution. It is proposed to use the developed mathematical models 
to select the optimal heats of these steels for the production of heat exchangers and 
predict their pitting resistance during their operation in circulating waters.
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1. Introduction

Corrosion-resistant steels of the austenitic 
class are widely used in the production of heat-ex-
change equipment, given their high corrosion re-
sistance in many environments [1‒4]. Currently, 
plate-like heat exchangers are widely used, be-
cause they are more compact than shell-and-tube 
heat exchangers, and also have less weight and 
more efficient thermal conductivity due to a sig-
nificantly smaller thickness (0.3 ... 1.0 mm versus 
1.0 ... 3.0 mm) of heat transfer elements. Howev-

er, the latter circumstance increases the likelihood 
of perforation of plates of plate heat exchangers in 
the case of pitting corrosion in circulating waters, 
which are used to cool technological products in 
chemical, oil, and gas refining, energy, and other 
industries [5–8]. Today, particular successes have 
been made in the field of studying corrosion prop-
erties of structural steels: the effect of chemical 
composition and roughness on pitting corrosion 
[9–10], the destruction of AISI 304 steel in a ma-
rine environment underwear and corrosion condi-
tions [11], as well as the effect of tribocorrosion 
conditions on pitting susceptibility and synergistic 
material loss for AISI 304 stainless steel [12]. In 
addition, it was found that parameters of recycled 
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waters and structural heterogeneity of AISI 304, 
12Kh18N10T, 8Kh18N10, AISI 321 sheets of 
steel significantly affect their pitting resistance in 
recycled waters, and the effect of their chemical 
composition is not so significant and is determined 
only by the amount of Cr in their composition 
[13‒15 ]. 

However, to date, there is no information in 
the literature on modeling and assessing the pit-
ting resistance of structural materials from which 
smelting exchangers are made. Nowadays modern 
models describing the dependence of corrosion-re-
sistant steels’ and alloys’ CPT on the parameters 
of circulating water (pH, chloride concentration) 
and steel parameters (chemical composition and 
structural heterogeneity) do not currently exist. 
Therefore, the prediction of corrosion behavior 
during operation and finding a correlation between 
model prediction and experimental data is an ur-
gent problem.

The main goal of this work is to model the cor-
rosion behavior of structural steels AISI 304, AISI 
321, 12Kh18N10T, and 08Kh18N10, to determine 
the role of chromium and other components of 
these steels in their pitting resistance and to build 
mathematical models based on linear quadratic 
regressions and on a two-layer neural network of 
direct signal propagation. We have not found simi-
lar approaches because this is a pioneer work. The 
article summarizes experimental data of corrosion 
studies that we have conducted in the laboratory 
of the Azov Machine-Building Plant in Berdyansk 
city of Zaporozhye region for seven years.

2. Materials and research methods

Five industrial smeltings of steels of the austen-
itic class AISI 304, AISI 321 and one 12Kh18N10T 
and 08Kh18N10 were studied. Their chemical 

composition is presented in (Tables 1 and 2), and 
structural heterogeneity was determined earlier in 
[13].

The data-driven approach allows building a 
model on the experimental data only without any 
expert knowledge (physical, chemical, etc. theoret-
ical models). Such a technique provides an oppor-
tunity for model building in insufficiently explored 
problems.

Mathematical models of the dependence of the 
critical pitting temperature (CPT) of steels depend-
ing on their chemical composition (Tables 1 and 2), 
structural heterogeneity and parameters of model 
circulating waters (pH 4…8, chloride concentra-
tion CCl = 350, 400, 500 , 550, 600 mg/l). These 
parameters have the greatest effect on the pitting 
resistance of steels since the ratio of the concentra-
tions of chlorides in them to other anions (sulfates, 
nitrates, etc.) does not reach a critical value, and 
the rate of recycled water outflow is laminar [16]. 
Linear quadratic equations were constructed us-
ing these parameters (1). We have used a standard 
feed-forward neural network, widely described in 
literature [17]:

∑=
k

kkcwy ,

where: y – is the critical pitting temperature (CPT) 
of steels, °С; wk – the weight coefficient of the 
components (see Table 3); ck – the feature compo-
nent xi (see Table 3).

In particular, the output feature of model (1) 
is the CPT of steels AISI 304, 08Kh18N10, AISI 
321, 12Kh18N10T in model circulating waters, 
and the variable features xi are the indicators of 
model circulating waters (pH(x1); chloride content 
(x2), mg/l); components of the steel chemical com-
position (x3 – chromium), mass% [16].

Table 1 
Chemical composition of steels AISI 304 and 08Kh18N10 [13]

№
of smelting

Content of chemical elements, mass%
C Mn Si Cr Ni N Ti S P

1 0.071 1.23 0.22 17.96 9.34 0.048 – 0.001 0.027
2 0.067 1.74 0.50 18.22 8.09 0.046 – 0.001 0.028
3 0.075 1.65 0.43 18.25 8.09 0.055 – 0.004 0.024
4 0.050 1.70 0.41 18.30 8.10 0.044 – 0.002 0.028
5 0.030 1.81 0.39 18.10 8.20 0.039 – 0.001 0.034

08Kh18N10 0.060 1.34 0.32 17.44 9.77 – – 0.006 0.035

(1)
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A neural network model based on a two-layer 
feed-forward neural network for a reduced num-
ber of input features (x1, x2 and x3) is described by 
formula (2) [18]. To simulate and train the neural 
network we have used online scripts of MATLAB  
[17]. The training has been provided using Lev-
enberg-Marquardt algorithm. We have used 60%  
of the data as training and 40% as validation. To 
assess the suitability of the model, it is advisable to 
test it on data that was not used for training. That is 
why 60% (n = 1200) of the sample were used. This 
value is given as a guideline.

(2)

where                               – activation function of the 

i-th neuron of the first layer of the network,
       – weight coefficient of the j-th input of the 
i-th neuron of the network’s first layer,

        – weight coefficient of the i-th input of the 
single neuron of the network’s second layer.

The values of the weight coefficients           and
      are presented in Table 4.
The weight coefficients of the regression model 

(1) were determined by the least squares method, 
and the quality of mathematical models was evalu-
ated by the sum of squares of instantaneous errors:

 (1, )
2

2ψ ( ) 1
1

i
aa

e−
= −

+

 (1, )ijw

 (2,1)iw

 (1, )ijw
 (2,1)iw

* 2

1
( )

s
s s

s
E y y

=
= −∑ , (3)

The S is a number of instances (observations) in 
a sample. We use the all data for a model building. 
We have used online scripts of MATLAB for all 
model building. This software use a least-squares 
method for regression models.

3. Research results and discussion

Analysis of the Ck constituent of the developed 
linear squares regression model (1), taking into ac-
count the established weight coefficients Wk (Table 
3), showed that the CPT of the studied AISI 304, 
08Kh18N10, AISI 321 and 12Kh18N10T steels in-
creases by 54.2 °С with increasing pH(x1) of model 
circulating water from 4 to 8 (see item 1 of Table 
3) and decreases by 12.0 °С with an increase in the 
concentration of chlorides in it from 350 to 600 
mg/l. This trend is consistent with known literature 
data [19–22]. At the same time, it should be noted 
that for the square of the constituent      (Table 
3, item 4), taking into account its weight coeffi-
cient. wk = -1.67·10-5 the increase in the concen-
tration of chlorides x2(СCl) within the above-men-
tioned limits has practically no effect on the value 
of y(CPT) of the steels under study. At the same 
time, for the constituent       (pH), an increase in 
pH(x1) of model circulating waters from 4 to 8 con-
tributes to a decrease in y(CPT) of steels by 47.3 
°С (Table 3, p. 3). At the same time, taking into 
account that for the constituent x1 (Table 3, item 
1) an increase in its value within the above limits 
contributes to an increase in y(CPT) of steels by 
54.2 °С, and for a decrease by 47.3 °С, the total 
the well-known tendency to increase the CPT of 
steels in chloride-containing media is not violated. 
Therefore, we can state the fact that y(CPT) of the 
studied steels increases on average by 6.9 °С with 
an increase in pH(x1) of model circulating waters 
from 4 to 8. This value is harmonized with experi-
mental data [23–26].

 2
2x

 2
1x

Table 2 
Chemical composition of steels AISI 321 and 12Kh18N10T [13]

№
of smelting 

Content of chemical elements, mass%
C Mn Si Cr Ni N Ti S P

1 0.035 1.66 0.54 17.10 9.10 0.012 0.32 0.001 0.026
2 0.060 1.59 0.66 16.43 9.14 0.011 0.34 0.002 0.027
3 0.064 1.22 0.52 17.43 9.70 0.012 0.41 0.001 0.026
4 0.030 1.62 0.41 17.41 9.24 0.013 0.31 0.002 0.028
5 0.040 1.70 0.49 17.70 9.10 0.013 0.35 0.001 0.026

12Kh18N10T 0.070 1.70 0.49 17.97 10.46 – 0.46 0.007 0.027

where: yS* – calculated value of the output feature 
for the s-th instance of observations (CPT); yS – the 
value of the output feature for the S-th instance 
of observations (CPT) determined experimentally 
[16]. 
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Table 3 
Feature constituents xi and their weighting coefficients

# Additive component Ck Weight coefficient wk

1 x1 13.54
2 x2 -0.0481
3 -0.9845
4 -1.67×10-5

5 0.1735

Studies of the pitting resistance of AISI 304  
and AISI 321 steels showed that it mainly depends 
on the parameters of model circulating waters (xi, 
x2), the content in them Cr within the standard. At 
the same time, the results of the analysis (Table 
3, №5) of the mathematical model (1) are harmo-
nized with the data of works [14, 27‒31] CPT in-
creases by 7.4 °C with an increase in the Cr content 
in steels from 17.1 to 18.3 mass% (Table 1). The 
pitting resistance of steels and alloys alloyed with 
Cr is associated with oxide films formed by Cr 
with O [32–34]. In addition, this element affects 
the solid-phase diffusion of Cr atoms to the surface 
of metastable pits and promotes their repassivation 
[29‒31]. There is evidence that Cr [35] increase 
the solubility of nitrogen in corrosion-resistant 
steels, and, consequently, their pitting resistance.

Thus, summarizing the above data, it can be 
noted that the pitting resistance of austenitic steels 
AISI 304, 08Kh18N10, AISI 321, 12Kh18N10T, 
is determined by the parameters of recycled waters 
(pH (x1), СCl- (x2)) and their Cr content. For other 
chemical elements in the studied steels (Tables 1 
and 2), the volume of titanium oxides and nitrides 
does not affect their y(CPT) and, accordingly, pit-
ting resistance.

It should be noted that the root-mean-square er-
ror of determining y(CPT) of the studied steels us-
ing the mathematical model (1) (Table 3) is 0.0382 
and the mean error is 0.0028. Thus, this mathemat-
ical model can be recommended to the industry for 
predicting the pitting resistance of heat exchange 
equipment using water circulation systems, as well 
as for selecting smeltings of these steels with op-
timal pitting resistance, depending on the operat-
ing conditions of this system. In addition, the de-
veloped mathematical model can be useful in the 
development of new steel grades proof of pitting 
corrosion.

The developed neural network model based on 
a two-layer neural network of forward propagation 
for a reduced number of input features (x1, x2, and 
x3) (2) makes it possible to obtain much more ac-

curately calculated values of y(CPT) for the steels 
under study, depending on the parameters of cir-
culating water (x1, x2) and chemical elements (x3) 
than the mathematical model (1). Since the total 
squares error for model (2) is 1.7994 (3). In this 
case, the error in determining the CPT of the stud-
ied steels during the experiment is ±0.5 °С. The 
disadvantage of the mathematical model (2) is the 
inability to estimate the quantitative effect of the 
parameters of the model circulating water, struc-
tural heterogeneity and chemical composition of 
the steels under study on their y(CPT). The values 
of the weight coefficient (wj

(1, i)) of the j-th input 
of the i-th neuron of the network’s first layer and 
the weight coefficient of the i-th input of the single 
neuron of the network’s second layer (wi

(2, 1)) are 
presented in (Table 4).

Table 4 
Values of the weight coefficients (wj

(1, i)) of the j-th 
input of the i-th neuron of the network’s first layer and 

the i-th input of the single neuron of the network’s 
second layer (wi

(2, 1))

wj
(1, i) i 1 2 3 4

j

0 -2.5702 -0.0005 0.0019 4.9133
1 (x1) -1.8387 0.1347 0.2015 -1.9649
2 (x2) 0.7325 0.2347 -0.2193 0.065

12 (x3) -20.6655 5.4093 0.1532 -0.2049
i 0 1 2 3 4

wi
(2, 1) -2.3433 17.5420 -1.0258 0.0047 8.3758

It should be noted that in the mathematical 
model (1) based on linear squares regressions, the 
following xi variables are significant: (x1, x2 are the 
pH of the model circulating waters and the con-
centration of chlorides in them) and x3 is the chro-
mium content in steels. And in a neural network 
model based on a neural network of direct signal 
propagation for reduced numbers of features (2): 
(x1, x2, and x3). Moreover, these features are com-
mon to both mathematical models. Thus, it turns 
out that these features are the most important in 
terms of their influence on the pitting resistance of 
the steels under study. In this case, the proposed 
mechanisms of the effect of these features on 
y(CPT) of steels AISI 304, 08Kh18N10, AISI 321, 
12Kh18N10T are described above.

To study the influence of chromium on the crit-
ical pitting temperature (CPT) of steels, five indus-
trial melts of AISI 304 and AISI 321 steel alloys 
and one melt each of 08X18N10 and 12X18N10T 
steels, which are analogues of the above-mentioned 

 2
1x

 2
2x
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steels, were studied. Samples with a diameter of 
42 mm and a thickness of 1 mm were polished, 
and their opposite surface and edge were shielded 
with fluoroplastic. Taking into account the possi-
bility of contamination of the surface of the heat 
transfer plates of heat exchangers with sediment 
from water, solutions that are most often encoun-
tered during the operation of heat exchangers were 
chosen (according to the statistics of OJSC “Pav-
logradhimmash” plant). The samples were sub-
jected to pitting corrosion in aqueous solutions of 
magnesium chloride MgCl2 with a chloride con-
centration of 350; 400; 500; 550 and 600 mg/l for 
5 h at a given temperature (± 0.5) °C and pH 4...8. 
The temperature of the solutions was maintained 

in a TS-80M-2 thermostat. For each study, 800 
samples of each smelting were taken. Arithmetic 
mean values of the obtained parameters were used 
in the calculations. Pittings were recorded visu-
ally in 100 fields of view of the MMP-2P micro-
scope. The samples were thermally tested in chlo-
ride-containing solutions to detect “active” pitting, 
i.e. with a diameter of 7 μm or more. In their ab-
sence, the temperature of each subsequent series of 
tests was increased by 2 °C until their appearance 
[13]. Table 5 reflects an experimental dependence 
of critical pitting temperature (CPT) of AISI 304 
and 08Kh18N10 steels on chlorine concentration 
in model circulating waters (x2) pH (x1) and the 
content of Cr in steel (x3).

Table 5 
Critical pitting temperature (CPT) of AISI 304 and 08Kh18N10 steels in chloride-containing solutions

рН CCl-, mg/l Steel AISI 304, smelting № Steel 08Х18Н10
1 2 3 4 5

CPТ, °СThe mean content of Cr, mass%
16.9 17.1 17.4 17.5 17.7

CPТ, °С CPТ, °С CPТ, °С CPТ, °С CPТ, °С
1 2 3 4 5 6 7 8
8

600

45 47 46 43 44 45
4 46 47 48 43 46 46
5 50 52 52 45 47 46
6 54 53 56 46 51 48
7 55 58 57 52 53 49
8

550

47 51 49 45 46 47
4 47 51 53 49 48 48
5 51 53 55 49 50 49
6 53 57 58 54 54 50
7 58 59 60 56 57 52
8

500

51 52 53 47 46 50
4 53 56 54 50 42 52
5 53 56 57 54 55 55
6 58 60 62 56 54 57
7 60 62 61 57 59 58
8

400

58 58 59 49 55 52
4 59 61 60 52 56 55
5 60 62 63 55 59 58
6 62 65 65 56 59 60
7 68 68 69 65 63 60
8

350

61 60 61 54 55 57
4 61 62 62 56 56 60
5 66 67 67 58 63 62
6 67 69 69 60 65 63
7 69 70 70 62 67 63
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The line graph (Fig. 1) illustrates the dependence 
of calculated steel’s CPT in model chlorine-con-
taining recycled waters from the chromium con-
centration in steel. In numerical experiments on 
the pitting processes in model chloride-containing 
media, the vast possibilities of [17] “MATLAB”  
methodology for mathematical modeling of chro-
mium-containing steel corrosion were used. The 

predicted dependence is shown in Fig. 1. An anal-
ysis of numerical experimental results showed that 
the CPT of steel AISI 304, 08X18H10, calculated 
by the mathematical model (1), taking into account 
the weighting factor of 5.46 for the components x3 
(Cr), grows in a straight line with an increase in 
the chromium content from 17.44 steel 08X18H10 
to 18.3 mass%, smelting 3, AISI 304 steel. The 
slope of the line indicates that a change in chromi-
um content in such an interval considerably affects 
the CPT of these steels in the studied circulating 
waters. At the same time, the analysis showed that 
the CPT of AISI 321 and 12Kh18N10T steel also 
significantly climbs by 8.3 °C with an increase in 
the chromium content in them from 16.46, melt 2 
of AISI321 steel to 17.97 mass% of 12Kh18N10T 
steel the straight-line dependence indicates that 
the CPT of the studied AISI304, 08Kh18N10, 
AISI321, 12Kh18N10T steels and their pitting re-
sistance in model circulating waters strongly de-
pends on the chromium content in them.

The mean content of Cr:

, n = 800, (4)

Experimental critical pitting temperature     
was obtained by formula:

, n = 800, (5)

 

Fig. 1. Dependence of calculated steel’s CPT in model chlorine-containing recycled waters on chromium l (x3) 
concentration (pH = 6, CCl = 500 mg/l).

 

Fig. 2. Dependence of experimentally determined steel’s CPT in model chlorine-containing recycled waters on 
chromium concentration (pH = 6, CCl = 500 mg/l).

 CPT
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An analysis of the experimental results (Fig. 
2) showed that the CPT of AISI304, 08Kh18N10, 
AISI321, and 12Kh18N10T sheets of steel in-
creases linearly with increasing chromium con-
centration. In general, the pitting temperature is 
directly proportional to the chromium content. 
The deviation from the theoretical value is due 
to the attendance of other elements in the steels, 
which also affects the pitting process. As can be 
seen from the comparison of theoretical and ex-
perimental graphs, the proposed model is in good 
agreement.

In order to estimate the extent of data distribu-
tion (or spread) around calculated CPT the Disper-
sion (R2) was determined as:

 

  n = 800, (6)

where уi is an experimental and уi,calc is a calculated 
data. The Root Mean Square Error (RMSE):

 

. (7)

The Mean Percentage Error (MPE) was calcu-
lated as:

 

 100%, (8)

Mean percentage error is 4.5‒5.2%.
Thus, it is shown that using the methodology 

at the stage of the technical design of steel com-
position makes it possible to simulate the pitting 
formation dynamics and, due to this, reduces the 
time for choosing a steel grade, decline the number 
of bench tests required, and improve the quality 
and efficiency of structures in chlorine-containing 
recycled waters.

4. Conclusions 

Two mathematical models have been developed, 
which are based on linear squares regressions and a 
feed-forward neural network for a reduced number 
of features. They are proposed to be used to select 
the optimal smelting of AISI 304, 08Kh18N10, 
AISI 321, 12Kh18N10T steels and predict the pit-

ting resistance of plate heat exchangers from them 
in circulating water. 

It has been established that their pitting resis-
tance increases with an increase in the pH of the 
circulating water, the Cr content and a decrease 
in the concentration of chlorides in the circulating 
water. Chromium promotes an increase in the solu-
bility of nitrogen in the austenite solid solution and 
the repassivation of pits under the action of anions 
of nitrogen compounds.

The mathematical model can be recommended 
to the industry for predicting the pitting resistance 
of heat exchange equipment using water circula-
tion systems, as well as for selecting smeltings of 
these steels with optimal pitting resistance, de-
pending on the operating conditions of this system. 
In addition, the developed mathematical model can 
be useful in the development of new steel grades 
proof of pitting corrosion.
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