Study of the Chemical Interactions Between Iron Phosphides and Iron Silicides

G.M. Serzhanov1*, V.M. Shevko1 and B.A. Lavrov2

1South Kazakhstan State University named after M. Auezov, Shymkent, Taukekhan av., 5, 160012, Kazakhstan
2St. Petersburg State Technological University, St. Petersburg, Moscow avenue, 26, 190013, Russia

Abstract
This article contains the research results of the thermodynamic modeling of interaction of iron phosphides Fe\textsubscript{2}P and FeP with FeSi\textsubscript{2}, obtained by a method of the total thermodynamic analysis on the basis of the program HSC-5.1 of the Finnish metallurgical company Outokumpu, developed on both a principle of the Gibbs energy minimization, and also kinetics of the phosphorus release by ferrosilicon from the electrothermal ferrophosphorus – a by-product of the yellow phosphorus production.

It was found, that temperature of the beginning of the phosphorus formation in systems iron phosphides – FeSi\textsubscript{2} depends on a mole ratio of phosphorus in the phosphides. At the increasing this ratio from 33.3 to 50\%, the temperature of the beginning of the phosphorus formation decreases from 1362 K to 1290 K. At lower temperature (773 K) there is the formation of intermediate FeP\textsubscript{2} and FeP in a system Fe\textsubscript{2}P-FeSi\textsubscript{2} and intermediate FeP\textsubscript{2} in a system FeP-FeSi\textsubscript{2}, which react with FeSi\textsubscript{2} with temperature increasing and form a gaseous phosphorus. The process proceeds in kinetic mode and is characterized by apparent activation energy of 281-389 kJ/mol.

Introduction
As mentioned by Ershov – in the electrothermal production of yellow phosphorus from raw materials of phosphorite, quartzite and coke, 1000 kg of phosphorus rise up to 300 kg of ferrophosphorus [1]. The main consumer of ferrophosphorus is the ferrous metallurgy, in which ferrophosphorus is used for smelting of alloyed phosphorus-containing steels (for example automatic steels), iron casting. However, recently in spite of the introduction of technical requirements [2] in industrial enterprises, considering chemical heterogeneity of ferrophosphorus concerning P, Mn, Si and the presence of slag inclusions a firm demand on the electrothermal ferrophosphorus [3] has decreased, and in connection with this fact a need of a search of a rational method of the electrothermal ferrophosphorus processing has arisen.

The world practice suggests some directions of the ferrophosphorus processing [3-13] with the production of different products: I) phosphate slags; II) iron phosphates; III) phosphorus silicates; IV) phosphates of alkaline metals; V) a powder for corrosion-resistant coatings; VI) phosphorus (III) oxide; VII) phosphorus (V) oxide; VIII) elemental phosphorus; IX) phosphoric acid; X) phosphorus chloride; XI) phosphorus sulphide; XII) aluminium and iron phosphides. However the known methods of the ferrophosphorus processing have essentially technological and economic disadvantages.

Within the aim of search of a rational way of the ferrophosphorus processing, we took as a principle the ability of silicon to displace phosphorus from a iron phosphide melt. However, unlike the known ways of the phosphorus production from ferrophosphorus according to the reactions (Eq.1 and Eq.2), we have chosen silicon silicides as a siliceous component instead of an expensive silicon or a mixture of SiO\textsubscript{2} and C. As shown in Eq.1 and Eq.2 in a former work we have investigated the reaction between Fe\textsubscript{2}P and FeSi\textsubscript{2} [14]:

\begin{align*}
\text{FeSi}_2 + \text{Fe}_2\text{P} & \rightarrow 3\text{Fe} + \text{P}_2 \\
\text{FeP}_2 + \text{FeSi}_2 & \rightarrow 3\text{Fe} + \text{Si} + \text{P}_2
\end{align*}
Fe₂P + 2Si = 2FeSi + 0.5P₂ \hspace{1cm} (Eq.1)

Fe₂P + 2SiO₂ + 4C = 2FeSi + 0.5P₂ + 4CO \hspace{1cm} (Eq.2)

Fe₂P + 2FeSi₂ = 4FeSi + 0.5P₂ \hspace{1cm} (Eq.3)

which appears more preferable than the reaction between Fe₂P, SiO₂ and C given in Eq.2.

It was found that the reaction (Eq.3) begins at 783 K, while the Eq.2 reaction starts only at 1573 K. Besides, the reaction (Eq.3) is characterized by the power inputs 648 kW·hour/t of phosphorus, and for the reaction (Eq.2) an input of 4600 kW·hour/t is necessary.

Industrial ferrophosphorus contains 12-27 mass % of phosphorus. Depending on a phosphorus content, ferrophosphorus consists of various amounts of Fe₃P, Fe₂P, FeP, FeP₂ [1, 15]. This article contains the research results of the thermodynamic modeling of interaction of Fe₂P and FeP with FeSi₂, and also the research results of kinetics of the phosphorus release from ferrophosphorus produced by the Open Company “Kazphosphate” at the presence of ferrosilicon of grade FS 65.

Research approach

The thermodynamic research of the interaction of iron phosphides with FeSi₂ was carried out using the program HSC-5.1 (Outokumpu), based on the principle of the Gibbs energy minimization [16, 17]. The subprogram “Reaction Equations” was used for the calculation of ∆\(G \)° and ∆\(H \)°, and the subprogram “Equilibrium Compositions” – for the calculation of an equilibrium degree of elements’ distribution in the investigated systems.

The experimental investigation of the kinetics of phosphorus release at the chemical interaction of ferrophosphorus and ferrosilicon was carried out in the St. Petersburg Technological University using an induction heating unit. An initial charge (100-110 g) was placed in a graphite crucible which was put into a furnace and kept in due time for melting in the furnace. The furnace temperature was measured by an optical pyrometer and a tungsten-rhenium thermocouple. After the experiment was terminated the crucible was taken out of the furnace. The cooled melt was weighed and analyzed for phosphorus content by the technique described in [2]. Some samples were analyzed by a scanning electron microscope JSM-6490LM (JEOL, Japan) and also by an X-ray diffractometer D8 Advance (Bruker). A degree of the phosphorus release in a gas phase (\(\alpha \)p, %) was determined according to the results of chemical analyses of the ferrophosphorus and the melt formed on phosphorus content using the following equation:

\[
\alpha_p = \frac{G_{FP} \cdot C_{P(FP)} - G_{melt} \cdot C_{P(melt)}}{G_{FP} \cdot C_{P(FP)}} \cdot 100
\] \hspace{1cm} (Eq.4)

where \(G_{FP} \) and \(G_{melt} \) – masses of the used ferrophosphorus and the produced melt accordingly (g); \(C_{P(FP)} \) and \(C_{P(melt)} \) – phosphorus content in the initial ferrophosphorus and in the melt accordingly (parts of unity).

At the experiment carrying out we used the electrothermal ferrophosphorus of a grade FeP 20-6 of the Open Company “Kazphosphate” and the ferrosilicon of a grade FS 65 [19] (Table 1).

Table 1

<table>
<thead>
<tr>
<th>Content (mass %)</th>
<th>P</th>
<th>Si</th>
<th>Mn</th>
<th>Al</th>
<th>Fe</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP</td>
<td>26.4</td>
<td>1.3</td>
<td>4.5</td>
<td>-</td>
<td>66.0</td>
<td>1.8</td>
</tr>
<tr>
<td>FS 65</td>
<td></td>
<td>63.8</td>
<td>0.6</td>
<td>1.1</td>
<td>33-1</td>
<td>1.4</td>
</tr>
</tbody>
</table>

X-ray patterns and electron microscopy of initial substances are represented in Figs. 1 and 2 respectively.
For the description of the phosphorus release process from the ferrophosphorus at the presence of the ferrosilicon the equation (Eq.5) was used:

\[\alpha = 1 - \exp[-k \cdot \tau^{n}] \]

(Eq.5)

where \(k \) and \(n \) are empirical coefficients, \(\tau \) – duration of the process (minutes), \(\alpha \) – degree of realization of the process (parts of unity) [20]. A speed of the phosphorus release from the ferrophosphorus (V) according to the IUPAC recommendations [21] was determined on the basis of the formula \(V = \frac{d\alpha}{d\tau} \).

For our case a speed of the phosphorus release from the ferrophosphorus was calculated by means of differentiation of the equation (Eq.5) [22] which gives:

\[V = \frac{d\alpha}{d\tau} = n \cdot k^{1/n} \cdot \left[-\ln(1 - \alpha) \right]^{1/(n)} \cdot (1 - \alpha) \]

(Eq.6)

The equation (Eq.6) allows estimating the speed of the process for every value of the phosphorus extraction if the coefficients “\(n \)” and “\(k \)” are known. After transformation of the exponential equation (Eq.5) in the linear equation:

\[\ln[-\ln(1-\alpha)] = \ln k + n \cdot \ln \tau \]

(Eq.7)

empirical coefficients of the equation were determined by means of a graphic representation of the experimental results in coordinates \(\ln[-\ln(1-\alpha)] – \ln \tau \). The coefficient “\(n \)” is determined as a slope of the straight line to the axis \(\ln \tau \), and the coefficient “\(k \)” – on the basis of the \(\ln k \) value as a segment intercepted by the straight line on the ordinate axis at \(\ln \tau = 0 \).

For the calculation of apparent activation energy of the process (\(E_{ap} \)) according to [23-25] we determined a dependence \(\lg V = f(1/\tau) \) for fixed values \(\alpha \). Then \(E_{ap} \) was estimated using Eq.8:

\[E_{ap} = 2.303 \cdot 8.314 \cdot |\tan \phi| \]

(Eq.8)

where \(\phi \) – inclination of the line to the abscissa axis, 8.314 – the universal gas constant (J/(mole*K)), \(E_{ap} \) – apparent activation energy (J/mole).

Results and Discussion

Thermodynamic Analysis

For the system Fe\(_2\)P-2FeSi\(_2\). As can be predicted from Eq.3 the results of the thermodynamic modeling show that in the temperature range (773-2273 K), basic compounds are FeP\(_2\), FeP, Fe\(_2\)P, P\(_4\), P\(_2\), FeSi, FeSi\(_2\), Fe\(_3\)Si\(_2\), Fe\(_3\)Si\(_3\) (Fig. 3). The phosphorus distribution in the system at 773 K is the following: 91% in FeP\(_2\) and 9% in FeP. Thus 46.4% of silicon passes into FeSi, and 53.6% remains in Fe\(_3\)Si\(_2\). The distribution degree of iron (\(\alpha \)) in the system at 773 K is given in Table 3:

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Formula</th>
<th>% mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Phosphide</td>
<td>FeP</td>
<td>44.3</td>
</tr>
<tr>
<td>M Barringerite, syn</td>
<td>Fe(_2)P</td>
<td>33.1</td>
</tr>
<tr>
<td>Iron Silicon</td>
<td>FeSi</td>
<td>22.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound Name</th>
<th>Formula</th>
<th>% mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron Phosphide</td>
<td>Si</td>
<td>26.1</td>
</tr>
<tr>
<td>Ferdisilicite, syn (NR)</td>
<td>FeSi</td>
<td>6</td>
</tr>
<tr>
<td>Iron Silicon</td>
<td>FeSi(_2)</td>
<td>67.9</td>
</tr>
</tbody>
</table>

For the description of the phosphorus release process from the ferrophosphorus at the presence of the ferrosilicon the equation (Eq.5) was used:

\[\alpha = 1 - \exp[-k \cdot \tau^{n}] \]

(Eq.5)

where \(k \) and \(n \) are empirical coefficients, \(\tau \) – duration of the process (minutes), \(\alpha \) – degree of realization of the process (parts of unity) [20]. A speed of the phosphorus release from the ferrophosphorus (V) according to the IUPAC recommendations [21] was determined on the basis of the formula \(V = \frac{d\alpha}{d\tau} \). In

Table 3

<table>
<thead>
<tr>
<th>(\alpha_{Fe}) (%)</th>
<th>46.3</th>
<th>28</th>
<th>21.5</th>
<th>3.9</th>
<th><0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound</td>
<td>FeSi</td>
<td>FeSi(_2)</td>
<td>FeP(_2)</td>
<td>FeP</td>
<td>FeP</td>
</tr>
</tbody>
</table>
The beginning (1%) of the formation of a gaseous phosphorus as \(P_4 \) and \(P_2 \) in the system is observed at 1362 K. A degree of the phosphorus transformation in the gaseous \(P_2 \), \(P_4 \) (\(\alpha_{P_g} \)) at 1973 K is equal to 96.7% and at 2173 K is equal to 99.9%.

The formation of \(FeP_2 \) and \(FeP \) in the system \(Fe_2P-3FeSi_2 \) observed at low temperature, most probably, is connected within the reactions:

\[
Fe_2P + FeSi_2 = FeP + 2FeSi \quad (\text{Eq.9})
\]

\[
2Fe_2P + 3FeSi_2 = FeP_2 + 6FeSi \quad (\text{Eq.10})
\]

which are possible already at 573 K on the basis of \(\Delta G^0 \) calculated [16] (Table 4).

Then, with the rising temperature, the \(FeP_2 \) (Eq.10) and \(FeP \) (Eq.9) react with \(FeSi_2 \):

\[
FeP_2 + FeSi_2 = 2FeSi + P_2 \quad (\text{Eq.11})
\]

\[
FeP + FeSi_2 = 2FeSi + 0.5P_2 \quad (\text{Eq.12})
\]

For these systems temperatures of the beginning equilibrium reaction (\(\Delta G^0 = 0 \)) are 1583 K and 1393 K accordingly. Similarly the reactions 9-12 lead to the following reactions (Eq.13 and Eq.14):

\[
3Fe_2 P + 6FeSi_2 = 12FeSi + 1.5P_2 \quad (\text{Eq.13})
\]

or

\[
Fe_2 P + 2FeSi_2 = 4FeSi + 0.5P_2 \quad (\text{Eq.14})
\]

Concerning the system \(FeP-FeSi_2 \), as can be predicted from Eq.12, the formation of \(FeP_2 \) and \(FeSi \) (Fig. 3) at 773 K is a result of the following reaction (Eq.15):

\[
2FeP + FeSi_2 = FeP_2 + 2FeSi \quad (\text{Eq.15})
\]

which is possible already at 573 K on the basis of the \(\Delta G^0 \) calculation [16] (Table 5).

In the given system, in which an atomic ratio of phosphorus (0.5) in the ferrophosphorus 1% of the gaseous phosphorus formation is observed at 1290 K and notably the temperature of the beginning has been reduced by 72 K in comparison with the system \(Fe_2P-FeSi_2 \), in which an atomic fraction of phosphorus in the ferrophosphorus makes 33.3%. A complete termination of the phosphorus release (99.8%) from the system \(FeP-FeSi_2 \) takes place at 2073 K, this temperature is 100 K less, than the respective temperature for the system \(Fe_2P-FeSi_2 \).

On the basis of the results of the thermodynamic calculation within the temperature range (773-2073 K), the chemical interaction in the system (concerning phosphorus) occurs according to (Eq.16):

\[
FeP \rightarrow FeP_2 \rightarrow P_2 \quad (\text{Eq.16})
\]

Kinetics Processes

The kinetics of the phosphorus extraction in the gas phase was carried with temperature range 1873-2073 K for the endotherms containing 26.4% of phosphorus (FP), with ferrosilicon (grade FS 65) containing 63.8% of silicon (FS). It was first established that the ratio FS/FP (\(\gamma \)) influences appreciably on \(\alpha_p \) (Table 6). In the subsequent experiences \(\gamma \) is equal 2.4.
Fig. 3. Influence of temperature on the equilibrium degree of the phosphorus, silicon and iron distribution \(\alpha\) in the systems \(\text{Fe}_2\text{P} – \text{FeSi}_2\) and \(\text{FeP} – \text{FeSi}_2\) at pressure 0.1 MPa: A – the \(\text{Fe}_2\text{P}\)-\(\text{FeSi}_2\) system, B – the \(\text{FeP}\)-\(\text{FeSi}_2\) system I-P, II-Si, III-Fe.

Table 6
Influence of the FS/FP ratio on \(\alpha_P\) at the charge melting during 120 min at 1973 K

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>1.1</th>
<th>1.6</th>
<th>1.8</th>
<th>2.0</th>
<th>2.2</th>
<th>2.4</th>
<th>2.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_P) (%)</td>
<td>44.3</td>
<td>60.5</td>
<td>63.8</td>
<td>67.2</td>
<td>69.4</td>
<td>70.6</td>
<td>70.9</td>
</tr>
</tbody>
</table>

The information about the influence of temperature and time on \(\alpha_P\) is given in Fig. 4.

As can be shown in Fig. 4, value of \(\alpha_P\) as like as 80-83% could be reached at 2073 K in the course of 100-120 min. In the process, the ferrosilicon is formed with a composition of: 44.6% of Si, 48.8% of Fe, 1.7% of P, 1.9% of Mn and 3% of other minor elements (Fig. 6).

Fig. 4. Influence of temperature and time on a degree of the gaseous phosphorus formation \(\alpha_p\) in the system \(\text{FP} – \gamma\text{FS}\) at \(\gamma = 2.4\).
Study of the Chemical Interactions Between Iron Phosphides and Iron Silicides

The applicability of the equation (Eq.5) to the process of phosphorus release from ferrophosphorus can evaluated from the plots of Fig. 6.

\[
\ln(\ln(1-\alpha)) = f(\ln \tau)
\]

Fig. 6. Dependence \(\ln(\ln(1-\alpha)) = f(\ln \tau)\) at the extraction of phosphorus from the system FP – 2.4 FS.

The influence of temperature on the coefficients “n” and “k” in the equations (Eq.5) is given on the Fig. 7. It follows from the Fig.7 that the temperature increase leads to the “n” decrease and the “k” increase. The equations of dependences \(n = f(T) \) and \(k = f(T) \) are the following:

\[n = 4.1554 - 0.00165 \cdot T \quad (R^2 = 0.963) \quad \text{(Eq.17)} \]

\[k = -3.5649 + 0.4729 \cdot \ln T \quad (R^2 = 0.905) \quad \text{(Eq.18)} \]

Substituting the equations (Eq.17 and Eq.18) in the equation (Eq.5) we have established the generalized dependence law \(\alpha = f(T, \tau) \) given in Eq.19:

\[
\alpha = 1 - \exp[(3.5649-0.4729) \cdot T^{-4.15416.5 \cdot 10^{-4}}] \quad \text{(Eq.19)}
\]

After the differentiation of the equation (Eq.19) we obtained the following expression for the phosphorus extraction rate \(V \), given in Eq.20:

\[
V = \frac{da}{dt} = (4.1554 - 16.5 \cdot 10^{-4} \cdot T - 0.4729 \cdot \ln T - 3.5649)^{3.15416.5 \cdot 10^{-4}} \cdot [-\ln(1-\alpha1-14.1554-16.5 \cdot 10^{-4} \cdot T \cdot 1-\alpha)]
\]

Using the equation (Eq.20) the phosphorus release rates from the system FP – 2.4 FS for \(\alpha = 0.2, 0.3 \) and 0.4 of parts of unity are given in Table 7.

Table 7

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>(V) (parts of unity/min)</th>
<th>(\alpha = 0.2)</th>
<th>(\alpha = 0.3)</th>
<th>(\alpha = 0.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1873</td>
<td>0.00161</td>
<td>0.00146</td>
<td>0.00129</td>
<td></td>
</tr>
<tr>
<td>1973</td>
<td>0.0129</td>
<td>0.0104</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>2073</td>
<td>0.0177</td>
<td>0.0120</td>
<td>0.007</td>
<td></td>
</tr>
</tbody>
</table>

The temperature effect on \(V \) in coordinates \(\lg V = f(1/T) \) is presented on the Fig. 8. On the basis of this figure, using the equation (Eq.7) we detected that \(E_{ap} \) could depends on \(\alpha \), reducing at the \(\alpha \) decrease (Table 8).

Table 8

<table>
<thead>
<tr>
<th>(\alpha) (%)</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{ap}) (kJ/mol)</td>
<td>389</td>
<td>325</td>
<td>281</td>
</tr>
</tbody>
</table>
It follows from the determined values of E_{ap} that the process of phosphorus release from ferrophosphorus in the presence of ferrosilicon FS 65 takes place in kinetic area, and the decrease of E_{ap} at the increase of α_R is a consequence of intensification of influence of the mass exchange phenomena on the process. Nevertheless the process intensification demands the temperature increase.

Conclusions

The present study has allowed the following conclusion:

- in the system $\text{Fe}_2\text{P–FeSi}_2$ at a low temperature (773 K) there is the formation of the intermediate FeP and FeP$_3$, and in the system FeP–FeSi$_2$ – the intermediate FeP$_3$. At the increasing temperature these compounds react with FeSi$_2$ and form gaseous phosphorus (mainly as P$_2$);
- temperatures of initial and final stages of the phosphorus formation in the systems iron phosphides – FeSi$_2$ depends on an atomic fraction of phosphorus in the phosphides; at the increasing the mole phosphorus content from 33.3 to 50.0% the initial temperature of the gaseous phosphorus formation decreases from 1362 K to 1290 K, and a maximum degree of the transformation of phosphorus in a gaseous state decreases by 100 degrees;
- a degree of the phosphorus release from ferrophosphorus (26.4% of P) at the presence ferrosilicon (FS 65) makes 75-83% at 2073 K and duration of the process 120 min; the process is characterized by apparent activation energy from 281 to 389 kJ/mol and proceeds in a kinetic mode.

References

Study of the Chemical Interactions Between Iron Phosphides and Iron Silicides

Received 7 April 2014