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Abstract
In this paper, two complementary chemistry model reduction methods for combustion simulations are 

further developed and combined. A progress variable model (PVM), which follows the idea of trajectory 
generated manifolds (TGLDM), is tailored for describing auto-ignition in situations where the influence of 
molecular transport on chemical reaction is weak, like auto-ignition in media with weak scalar gradients. The 
other model using the reaction diffusion manifold approach (REDIM) is designed for situations where the 
interaction of chemistry with molecular transport is essential. The formulation of both models is discussed 
and implementational issues of each single model are given. Also, each model is tested in its respective 
range of applicability (quasi-homogeneous combustion under steady/unsteady physical boundary conditions 
for the PVM, combustion in fields with essential scalar gradients for REDIM). The coupling of the two 
models into a unified model, which covers combustion in both regimes and during the transitions between 
regimes, is discussed, based on the global quasi-linearization concept (GQL).

Introduction

A common way to deal with combustion in CFD/
LES simulations is to use simplified, reduced mod-
els for chemical reaction instead of the computation-
ally prohibitive detailed chemical kinetics [1]. The 
reduced models typically introduce two simplifica-
tions: On the one hand, the number of variables to 
be solved for is strongly reduced, mainly because of 
the abandonment of the multitude of chemical spe-
cies in the detailed description; typically, some ten to 
thousands of species are replaced by a few variables 
that describe chemistry. On the other hand, further 
simplification consists in the removal of strongly 
disparate timescales governing the system’s devel-
opment, which also aggravate the detailed descrip-
tion [2].

Formally, the simplification can be described as 
follows: Instead of solving the full n-dimensional 
system of PDEs (where n denotes the dimension 
of the detailed thermo-chemical state vector Ψ, e.g. 
comprising temperature, pressure and species), the 
system of PDEs is reduced to m < n dimensions 
(where m denotes the dimension of the reduced state 

vector θ). Hence, the m-dimensional system of con-
servation equations for the reduced state vector θ is 
given by [3, 4]:

 ( ) ( ) ( )( )*grad div gradPS v D
t
θ θ θ θ

ρ
∂

= − +
∂

(1)

with v denoting the flow velocity, ρ the density 
and D* the generalized diffusion matrix [5] and P 
a projection operator onto the reduced space. The 
appropriate chemical source terms S as well as the 
projection matrix and the diffusion matrix for the 
conservation equations of eq. (1) must be pre-calcu-
lated and provided by the model as a function of the 
reduced state θ. To solve this equation, initial and 
boundary conditions have to be known.

Many reduced approaches have been developed 
in the past to calculate and store the chemical source 
terms (e.g. ILDM [2, 6], REDIM [3, 7], GQL [8], 
FGM [9, 10], flamelet concept [11], flamelet-prolon-
gation of ILDM [12], CSP [13], QSSA [14] or prog-
ress variable models [15, 16, 17, 18], and all of them 
have their advantages and drawbacks, which are e.g. 
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discussed in [19] where also further references to 
reduction methods can be found.

Models normally are tailored for a certain range 
of applicability (i.e. combustion scenarios). For in-
stance, the flamelet-like models implicitly contain 
a coupling of chemistry with molecular transport, 
and their natural field of application is therefore 
combustion scenarios where chemical reaction is 
accompanied by transport, e.g., flame-like combus-
tion or auto-ignition at mixing layers of hot gas with 
unburned gas [20, 21]. For describing situations 
where, e.g. chemical reaction occurs without essen-
tial influence of transport, many concepts are avail-
able [17, 19].

But in practice such scenarios appear either in 
parallel or sequentially. A typical case is the onset of 
combustion in compression-ignition engines, which 
often starts as auto-ignition at some site where the 
local conditions favor auto-ignition, e.g., by slightly 
elevated temperatures (hot-spots) [22]. The trans-
port processes at that site are often weak, so that the 
process before and during auto-ignition is dominat-
ed almost exclusively by the reaction source terms. 
After ignition, fast chemical reactions produce com-
bustion products and high temperatures, thus creat-
ing strong gradients with respect to the surround-
ings, which, in turn, cause strong transport processes 
at the hot-spot’s boundary, giving rise to a flame-
like propagating reaction front. Therefore, while the 
initiation of combustion would be described by a 
model tailored for homogeneous auto-ignition, the 
subsequent flame with its transport driven propaga-
tion mode would call for a flamelet-like model.

There is a lack of models for such situations with 
«overlapping effects», so that in practical simula-
tions, often some manual selection and adjustment 
of models has to be performed.

In an attempt to improve the situation, we com-
bine two reduced simplified models for different 
combustion scenarios to a unified model: A model 
tailored for auto-ignition without transport (progress 
variable model, PVM), and the REDIM (Reaction 
Diffusion Manifold) model for combustion with dif-
fusive processes.

We demonstrate the performance of these models 
within their respective domain of validity, by com-
paring predictions of the reduced models with the 
outcome of detailed numerical simulations for the 
same conditions. In particular, for the progress vari-
able model, homogeneous auto-ignition for steady 
and unsteady conditions with respect to pressure 
and enthalpy is studied. For the REDIM model, the 
propagation of a premixed laminar flame is com-
puted.

The PVM and REDIM both describe low-dimen-
sional subsets (manifolds) in state space to which 

the system’s dynamics is confined. A coupling of the 
two models corresponds to a connection of the two 
manifolds. A concept for accomplishing such a con-
nection based on the concept of global quasi-linear-
ization (GQL) is developed.

The final outcome is a unified model, which al-
lows an efficient model reduction with a large range 
of application.

Model Reduction Strategies

As noted above, in this work we combine two 
model reduction concepts, which are favorable for 
different combustion regimes: a PVM and a REDIM 
concept. These will be described in the following, 
where we focus only on the aspects relevant for the 
unified model.

Progress Variable Model (PVM)

To treat auto-ignition processes with simplified 
chemistry, a progress variable model has been devel-
oped [15]. It is based on mapping information about 
the dynamics of chemical reactions from detailed 
calculations of homogeneous, adiabatic, isobaric re-
actors onto a single variable, the progress variable. 
The model follows the concept of the trajectory gen-
erated low dimensional manifolds (TGLDM) [23]. 
A large range of physical conditions under which 
reaction occurs can be incorporated into the model 
by computing homogeneous reaction systems for 
different initial temperatures, pressures and mix-
ture compositions. The calculations for the detailed 
trajectories were performed with the in-house code 
HOMREA [24].

Mathematical Model

The thermochemical state of the homogeneous 
reaction system is described by the state vector Ψ = 
[h,p, Y1,...,Yns]T as a point in the (ns + 2)-dimensional 
state space. Here h is the specific enthalpy of the 
mixture, p the pressure and Yi are the mass fractions 
of the chemical species i (with ns as the number of 
the chemical species). The simplifications for an 
isobaric, adiabatic and homogeneous system lead in 
vector form to                       with the chemical source 
term F (Ψ) = [0,0,Miωi / ρ,...,Mns ωns / ρ]T and the den-
sity ρ, the molar mass Mi of species i and the molar 
production rate ωi of species i.

Solving this system of ordinary differential 
equations for a given initial state Ψ0 = Ψ (t = 0) 
the temporal evolution of the system is obtained. 
At any given point in time, the detailed state vec-
tor, and therefore also the chemical source, is then 
known.

 ( )/ t F∂Ψ ∂ = Ψ
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A set of different initial values defines a mani-
fold generator [23], and if the manifold defined by 
the initial conditions is m-dimensional, then the 
resulting low-dimensional manifold is (m + 1)-di-
mensional with the reaction progress being the ad-
ditional coordinate.

Parametrizing a trajectory by some suitable 
progress variable χ (see below), a detailed state Ψ on 
a trajectory is completely specified by initial condi-
tions and a value of χ.

The initial conditions for a trajectory can be 
specified by the initial enthalpy h of the mixture, the 
pressure p and the unreacted mixture composition 
Yi,0, which, in turn, can be expressed by the mixture 
fraction Z [14], if all admissible initial mixtures re-
sult from mixing of fuel and air in different ratios. 
This can be generalized to incorporate also other 
quantities like exhaust gas content, exhaust gas 
composition, statistical moments of these quantities 
if necessary. When a set of trajectories for different 
initial conditions is present, a state on the subspace 
formed by all trajectories can be specified by a re-
duced state vector θ:

 ( ) ( )  with , , ,h p Zθ θ χΨ = Ψ = (2)

Precalculating trajectories, one can compute and 
tabulate the chemical source term of the progress 
variable for use in eq. (1) as a function of the re-
duced state vector.

Definition of the Progress Variable

Various models rely on the notion of some mea-
sure for chemical progress, and several approaches 
have been taken to define a chemical progress vari-
able [15, 17, 18, 25, 26]. Some are based on tem-
perature or the thermal energy released by chemical 
reaction, others on chemical species or combina-
tions thereof. The importance of temporal monoto-
nicity of that progress variable is stressed in many 
of these works. In general, one may impose this and 
some additional requirements on a progress variable 
[15, 27], namely monotonicity in time during reac-
tion (              ), positivity and boundedness, such 
that a normalization is possible (χ = 0 for unreacted 
fuel/air mixture, χ = 1 for chemical equilibrium), 
sensitivity to important stages of chemical reaction 
(ignition process, combustion) and universality (ap-
plicability to all reaction systems).

Finding such a variable is nontrivial [15, 27]. The 
entropy of the mixture is guaranteed to be mono-
tonically increasing in a closed, adiabatic system by 
virtue of the second law of thermodynamics and the 
irreversibility of the ignition and combustion pro-
cess. Furthermore, entropy also displays good sen-

sitivity to chemical activity, including early stages 
of ignition, which results in a good resolution of all 
phases of the ignition process.

Based on the rate of production of the specific 
entropy ṡ of the mixture the progress variable χ and 
its time derivative     are defined as: 

 / 0tχ∂ ∂ ≥
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and si denoting the specific entropy, cp,i the specific 
heat capacity at constant pressure and pi the partial 
pressure of species i. Furthermore, T denotes the 
temperature and     the universal gas constant.

This definition fulfills all requirements speci-
fied for the progress variable above, and is therefore 
used in this work.

Reaction Diffusion Manifold (REDIM)

The REDIM method has been described in detail 
in [3, 7]. In the following, only a short account of the 
REDIM method will therefore be given.

Using the thermochemical state vector Ψ = [h,p, 
Y1,...,Yns]T as introduced above, the conservation 
equations for a reacting system are given as:

 ( ) ( ) ( )( ) ( )1grad div gradF v D
t ρ

∂Ψ
= Ψ − Ψ − Ψ ≡ Φ Ψ

∂ (6)

with v denoting the flow velocity and D the general-
ized diffusion matrix [5].

Applying the framework of invariant system 
manifolds, it is assumed that the evolution of the 
system is part of the m-dimensional subspace, 
namely the manifold, which is parameterized by 
the reduced coordinates θ. This means that the vec-
tor field, described by the right-hand side of eq. (6) 
belongs to the tangent space of the manifold and the 
projection into the normal space of the manifold has 
to be zero:

( ) ( ) 0I θ θ
+−Ψ Ψ ⋅Φ Ψ = (7)

 R

 χ&

using the unit matrix I, the derivative Ψθ of Ψ with 
respect to θ and its Moore-Penrose pseudo-inverse   

          [28]. 
θ
+Ψ
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The simplification of equal diffusivities (D = d · I) 
with the diffusion coefficient d and reformulation

 ( ) ( ) ( )( ) ( )( ) ( ) ( )1 grad gradI F d
t θ θ θθ

θ
θ θ θ θ θ

ρ
+∂Ψ  

= −Ψ Ψ ⋅ Ψ − Ψ ° ° ∂  

of eq. (7) to a system of PDEs [3] leads to the evolu-
tion equation of the manifold:

For the extension of the REDIM method to sys-
tems with detailed transport models with a general-
ized diffusion matrix D see [29].

Starting from an initial guess and solving the 
system of PDEs of eq. (8) by using Dirichlet-type 
boundary conditions, one obtains the manifold as 
the stationary solution. For detailed procedure, see 
[3, 30]. Finally, the chemical source terms to use in 
eq. (1) can be tabulated as a function of the reduced 
state vector θ.

( ) ( ) ( )( ) S Fθθ θ θ+= Ψ ⋅ Ψ

Although the concept is quite simple, the solu-
tion of the evolution equation is challenging. To our 
knowledge this concept has only been applied to H2, 
CH4 and syngas combustion. For this work we have 
improved the numerical solution method such that it 
allows the treatment of large reaction mechanisms, 
and the example shown below is a first extension to 
a combustion system relevant for engine combus-
tion.

Tabulation Strategies

To use the models described above for calcula-
tions with simplified chemical kinetics, one has to 
tabulate and provide means for efficient evaluation 
of the chemical source terms of the reduced vari-
ables as a function of the reduced state vector θ. The 
strong non-linearity of the chemical source terms is 
a particular challenge for both the tabulation strat-
egy and the lookup (function evaluation) routine.

Several tabulation strategies exist; some of them 
work in situ during a calculation [31]. Here we focus 
on pre-calculating tabulations.

A straightforward approach for multivariate 
function tabulation is to use a rectilinear grid point 
system with equidistant spacing along each dimen-
sion. The resulting grid structure is independent of 
the function to be represented, but has to be speci-
fied a-priori by the user. The table-lookup (by inter-
polation) is simple and computationally fast.

However, the strongly non-linear nature of the 
chemical source terms often requires a locally very 
fine grid, while in other regions a coarse grid would 
be sufficient. The uniform grid spacing has to be 
adapted globally to the finest required resolution. 

For a large number of tabulation variables (high-di-
mension of the table), the equidistant approach can 
become infeasible due to the large memory require-
ments, which increase exponentially with dimen-
sion (curse of dimensionality [32]).

An interesting approach to overcome the curse of 
dimensionality is the application of adaptive grids. 
Based on the framework of sparse grids [33, 34, 
35] an adaptive sparse grid algorithm [36] has been 
implemented. Starting with the boundary grid points 
of a user-defined rectangular tabulation domain, 
the step size is successively halved per dimension. 
For each originating grid point the tabulation accu-
racy and the interpolation error, respectively, is con-
trolled by checking a defined criterion. If necessary, 
the grid point is added to the dataset of the tabula-
tion. The refinement continues until the required ac-
curacy or the maximum refinement level is reached.

A requirement of the adaptive grid algorithm is 
the representation of the function (i.e. the chemical 
source terms) based on discrete supporting points in 
hierarchical basis [37, 38]. In contrast to the repre-
sentation in classical nodal basis a hierarchy on the 
supporting points is defined by successively refining 
the grid and halving the step size, respectively.

For simplicity, the following description is limited 
to the one-dimensional case. Let f (x) be a univariate 
function on the interval [0,1]. Then the interpolant

    based on n supporting points can be repre-
sented by a linear combination of the basis function 
β with the coefficients ui:

 
( ) ( )

1

n

i i
i

f x u xϕ
=

=∑%

(8)

(9)

(10)

using

 
( )i

xx i
x

ϕ β  = − ∆ 

and Δx denoting the spacing of the supporting points.
In hierarchical basis the spacing is given to  

Δx = 2-l with the hierarchical level l. In this case, the 
basis function depends on the hierarchical level l and 
the interpolant is given by the sum over all levels:

( ) ( ), ,
1 1

ln

i l i l
l i

f x u xϕ
≥ =

=∑∑%

 ( )f x%

(11)

(12)



Eurasian Chemico-Technological Journal 16 (2014) 107-116

M.-S. Benzinger et al. 111

using the basis function

 ( ) ( ), 2li l x x iϕ β= ⋅ −

and the so called hierarchical surplus ui,l.
Figure 1 shows the approximation of a one-di-

mensional example function for hierarchical basis. 
It can be seen that the mesh size of the hierarchical 
basis function depends on the level l.

The transition to the multi-dimensional case is 
via a tensor product approach [34], applied sepa-
rately to each basis function. This results in the mul-
tivariate basis function:

 
( ) ( ), ,

1
j j

d

i l i l j
j

x xϕ ϕ
=

= ∏

There are many possibilities to choose the one-
dimensional basis functions β (like polynomials and 
wavelets [39]). In this work we will use the hat-
function as basis function for linear interpolation:



 −∈−

=
otherwice
yy

y
,0

)1;1(,||1
)(β

because this allows a simple, fast and efficient im-
plementation.

Coupling Strategy

Both methods used in this work rely on low-
dimensional manifolds in composition space. How-
ever, they inevitably are based on different model 
reduction assumptions, and therefore the low-di-

mensional manifolds do not coincide. Therefore it 
is necessary to have a smooth transition between the 
two manifolds. To combine the PVM and REDIM 
approach, a transition between the two models is im-
plemented, based on the global quasi-linearization 
approach (GQL) [8].

A simple connection can be established by iden-
tifying points on the two manifolds that feature a 
correspondence with respect to the fast chemical 
subspace. For instance, given a reduced vector θPVM 
which describes a state on the manifold described 
by the progress variable model, a corresponding 
reduced state θREDIM on the REDIM manifold can 
be found by the condition that both points are on 
the same trajectory of the fast subspace, or in other 
word, that the coordinates in the slow subspace are 
equal:

( ) ( )PVM PVM REDIM REDIMs sM Mθ θΨ = Ψ

(13)

(14)

(15)

(16)

with the matrix Ms representing the global slow 
chemical directions identified by the GQL. By this, 
the reduced state θPVM on the PVM manifold is pro-
jected to the reduced state θREDIM on the REDIM 
manifold in direction of the fast chemical processes.

The slow subspace matrix Ms is obtained via the 
standard GQL technique and the mapping between 
the two manifolds is stored together with the two 
tables. Based on an identification of the respective 
combustion regime, the transition from one to the 
other manifold is performed during the application 
of the reduced schemes in the CFD calculation.

Implementation Details

For comparison and validation, we computed 
different combustion systems with detailed and sim-
plified chemistry.

For all detailed calculations, a reaction mecha-
nism for toluene reference fuel (TRF) [40] was used. 
The fuel mixture used in this work included 76.99 
mol-% of C8H18, 8.35 mol-% of C7H16 and 14.66 
mol-% of C6H5CH3 corresponding to an octane 
number of 95.

For domains where chemistry governs the pro-
cess, a PVM using an adaptive sparse grid was built. 
The parameter range in progress variable was set to 
0.0 < χ < 1.0, in pressure to 5 bar < p < 55 bar and 
mixture fraction to 0.25 < Z < 0.013. Instead of the 
specific enthalpy, the temperature T* of the corre-
sponding unreacted mixture was used as a tabulation 
parameter in the range of 700 K < T* < 1250 K.

To control the refinement, the local interpola-
tion error of the source term of the progress variable 

       was checked: f χ= &

Fig. 1. Scheme of function approximation in hierarchical 
basis, dash-dotted: function f, solid: interpolated func-
tion      .    f%
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Figure 3 shows the error in ignition delay time 
τign compared to the detailed calculations. Within the 
whole tabulation region, the reduced calculations 
yield nearly the same results like the detailed simu-
lations.

Fig. 2. Calculation of ignition processes using the re-
duced model with an adaptive sparse grid, T* = 800 K, 
p = 10 bar, ϕ = 2, square: temperature, triangle: mass frac-
tion of CH2O, solid: detailed calculation, dashed: reduced 
calculation

This example shows clearly that the tabulation 
strategy based on adaptive sparse grids allows a 
very efficient and accurate tabulation.

The accuracy could be increased further by using 
a finer grid for the tabulation; however, the observed 
deviation is already much smaller than, for example, 
the typical deviation between predictions of two dif-
ferent detailed reaction mechanisms, so that further 
refinement would be hardly worthwhile in practice.

Assessment of the Generality of the PVM

The test case shown above validates the tabula-
tion approach. It does however treat only systems 
with constant T*, p and Z, which had been used for 

Fig. 3. Error in ignition delay time using the reduced 
model with an adaptive sparse grid compared to detailed 
simulations, ϕ = 1,                                              .

 ( )rel abs| | max | |,f f fε ε− < ⋅% (17)

using a relative tolerance of εrel = 0.1, an absolute 
tolerance of εabs = 10-4 and a maximum refinement 
level of 20+d. Furthermore, the refinement was lim-
ited to Δχ > 10-4, ΔT* > 2 K, Δp > 2 bar and ΔZ > 10-2.

For reduced calculations of domains governed 
by reaction and diffusion, the REDIM method was 
used with four parameters, namely the mixture frac-
tion Z, pressure p, temperature of the unreacted mix-
ture T* and a chemical variable, on an equidistant 
grid for the reduced variable with 51 grid points for 
constant T*, p and Z. The gradient estimate [3] was 
taken from detailed calculations of laminar, adiabat-
ic, isobaric, pre-mixed flames.

Besides the chemical source terms, other prop-
erties of the mixture (e.g. mean molar mass    , tem-
perature T, density ρ, specific heat capacity at con-
stant pressure cp and rate of temperature increase by 
chemical reaction Ṫchem) are included in the tabula-
tions as well. For analysis and comparison with de-
tailed calculations, mass fractions of chemical spe-
cies are also part of the tabulations.

Model Validation

Assessment of the Tabulation Quality of the PVM

One application of the PVM with stationary con-
ditions is the reduced calculation of ignition pro-
cesses in a homogeneous, adiabatic, isobaric reactor. 

Given the initial conditions                               
the system of PDEs of eq. (1) yield in this case:

 *
0 0 0 0 0[ , , , , ]TT p Zθ χ=

 M

 [ ],0,0,0 T

t
θ χ∂
=

∂
&

This test case assesses the quality of the PVM 
exactly for the conditions it was built for and there-
fore validates the tabulation strategy (interpolation 
error).

Figure 2 compares the development of tempera-
ture and mass fraction of an intermediate species 
(CH2O) for detailed and reduced calculation, for
χ0 = 0, *

0T  = 800 K, p0 = 10 bar and mixture fraction 
according to equivalent ratio ϕ0 = 2. One can see that 
multistage ignition, which is an important phenome-
non in ignition processes, is represented realistically 
by the reduced model. For rich mixtures, the drop 
of temperature in the later stages of ignition is also 
reproduced. Besides the temperature also the inter-
mediate species is close to the detailed simulations.

(18)
ignredign,det,detign, /||)( ττττ −=∈ ign
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the manifold generation. Therefore it is interesting 
to see whether the model can handle conditions with 
varying T*, p and Z, which had not been used for the 
manifold calculation.

To validate the PVM for instationary conditions 
with respect to enthalpy and pressure a second test 
case was chosen, namely model calculations of ho-
mogeneous engine cycles. For this, the temporal evo-
lution of the system’s volume V was prescribed as:

 
( )

( )
2

1/22 2 2

sin 2
sin

8 2 4 sin

sV b s
t r s

απ α α
α

 ⋅∂  = +
 ∂ − 

&

where b is the bore (100 mm), s the stroke (83 mm) 
and r the length of the conrod (149 mm). The com-
pression ratio used was 14:1.

The crank angle α changed with time according to:

 12
2

n tα π  = ⋅ − 
 

yielding its temporal derivative:

 2 nα π=&

Here, n denotes the engine speed. Eq. (19) imposes 
a temporal boundary condition onto the system, ren-
dering it non-autonomous.

For homogeneous engine cycle calculations the 
system of PDEs of eq. (1) yield the following sys-
tem of ODEs:

 ( )*, , ,T p Z
t
χ χ χ∂
=

∂
&

*

*
p

T Vp
t mc

∂
=

∂
&

 
chemTp M Vp

t T M V
κ

 ∂
= − −  ∂  

&& &

 
0Z

t
∂

=
∂

(19)

(20)

(21)

(22)

(23)

(24)

(25)

with m denoting the total mass,      the specific heat 
capacity at constant pressure for the unreacted mix-
ture,      the mean molar mass and κ the isentropic 
exponent. The «source» terms of temperature Ṫchem        
and mean molar mass       are provided by the model 
tabulation. The initial conditions were set to χ0 = 0, 

*
0T  = 500 K, p0 = 1 bar and mixture fraction accord-

ing to equivalent ratio ϕ0 = 1.

*
pc

 M

 M&

Figure 4 shows the evolution of pressure for both 
detailed and reduced calculations for a variation of 
engine speed. Even though the PVM is based on 
constant-pressure adiabatic trajectories (with pres-
sure appearing as a tabulation parameter), it still re-
produces the chemical dynamics in a system with 
an unsteady pressure evolution very well. Especially 
when ignition appears before the top dead center 
(TDC), the deviation in ignition time between de-
tailed and reduced calculations is less than 1 CAD. 
Even for higher engine speed and later ignition 
points, respectively, the pressure curve fits quite 
well to the detailed results (deviation in ignition 
time less than 2 CAD). For the presented, engine 
relevant parameters, the onset of auto-ignition is 
captured well. The peak pressure near TDC differs 
by maximum 3.3 %.

This model could e.g. also be used in a stochastic 
reactor model for engine combustion [41].

Fig. 4. Variation of engine speed for calculation of homo-
geneous engine cycle using the reduced model with an 
adaptive sparse grid, T = 500 K, p = 1 bar, ϕ = 1, square: 
n = 1000 min-1, triangle: n = 3000 min-1, circle: n = 6000 
min-1, solid: detailed calculation, dashed: reduced calcu-
lation.

Assessment of the Model Quality in the Domain of 
Coupling of Reaction and Diffusion

A third test case is flame propagation. Because 
the model couples a PVM with a REDIM model, 
it switches to the REDIM based table if coupling 
between reaction and diffusion becomes important. 
A test case for this domain are laminar flames. The 
system of PDEs yielding for the reduced calculation 
of flamelet trajectories are described in [3].

Figure 5 compares the stationary results of a 
laminar, adiabatic, isobaric, premixed flame for 
both, detailed and reduced calculations. Distribution 
of major species (like CO2) as well as intermediate 
species (like CH2O) show nearly no deviation in the 
flame front for detailed and reduced calculations.
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Note that the reduced model was designed to 
handle premixed or slightly stratified systems due to 
the choice of the gradient estimates for the REDIM 
construction. In the case of non-premixed flames, 
the reduced model could be easily adapted by using 
other gradient estimates [30].

Coupling of the Models

Finally, a case for an auto-ignition at some hot-
spot followed by flame propagation is presented. 

This one-dimensional simulation starts with a stoi-
chiometric fuel/air mixture at 10 bar. The initial 
temperature profile features a 500 K baseline, with 
a superimposed hot-spot with a temperature eleva-
tion of 7 K and a radius of 5 mm. The system then 
reacts under adiabatic-isobaric conditions. Since ini-
tially there are practically no spatial gradients, this 
process is modeled by the progress variable model. 
After a certain time (corresponding to the ignition 
delay time of a homogenous reactor at the given 
conditions), the hot-spot auto-ignites. This homo-
geneous reaction is depicted by red lines in Fig. 7, 
which show the temporal development of the spa-
tial CO2 profile. With time, the reaction leads to a 
steep temporal rise in CO2 inside the hot-spot, while 
the surroundings remain in a practically unreacted 
state. The chemical reaction in the hot-spot finally 
causes strong gradients with respect to temperature 
and species at the hot-spot's boundary. To simulate 
the subsequent development, therefore, the REDIM 
model is used.

The coupling between PVM and REDIM in this 
case is simply performed by mapping the CO2 val-
ues of the last PVM time-step to the REDIM model 
(using a matrix Ms in eq. (16) consisting of one line 
of all zeros, with only the column corresponding to 
CO2 being set equal to 1).

This further development is indicated by black 
lines in the figure. The system continues to react 
(with the chemical source terms now governed by 
the REDIM model), leading to a further increase of 
CO2, and the hot-spot expands. The gradients at the 
boundary continue to increase with time. With fur-
ther development in time, a flame would develop at 
the boundary (not visible here) and propagate.

The combined effect of auto-ignition with subse-
quent flame development is captured by the unified 
PV/REDIM model.

Fig. 5. Laminar free flame calculations using the reduced
model, T = 500 K, p = 5 bar, ϕ = 1, square: mass fraction
of CO2, triangle: mass fraction of CH2O, solid: detailed 
calculation, dashed: reduced calculation.

The laminar flame speed is an important char-
acteristic of premixed flame propagation. Figure 6 
compares the laminar flame speeds obtained by de-
tailed and reduced chemistry. The results from the 
reduced calculations show a slightly larger laminar 
flame speed. The deviation increases from 12% to 
24% in the direction of richer mixtures.

Fig. 6. Laminar flame speed for detailed and reduced cal-
culation, T = 500 K, p = 5 bar, solid: detailed calculation,
dashed: reduced calculation.

Fig. 7. Temporal evolution of mass fraction of CO2 during
hot-spot ignition and expansion, solid: development un-
der PVM, dashed: development under REDIM.
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Conclusions

In this paper, two reduced combustion models 
are presented and combined, which aim at describ-
ing different complementary combustion scenarios. 
One of the models is a progress variable model, de-
signed for describing homogeneous reactions. It is 
based on a generic definition of a progress variable 
(derived from the specific entropy of the reacting 
mixture). Even though this model is based on chem-
ical reaction trajectories of adiabatic constant-pres-
sure systems, it has performed well also in situations 
with an unsteady evolution of pressure, namely in 
representative simulations of homogeneous engine 
cycles. On the other hand, for combustion with 
strong coupling of reaction with molecular trans-
port, the REDIM-model is used. Both models are 
implemented for a complex fuel mixture (toluene 
reference fuel).

For situations where both homogeneous reac-
tion and reaction/transport-dominated modes occur 
simultaneously or in temporal sequence, an unified 
model which couples PVM and REDIM is intro-
duced and successfully applied to a simple test case 
(hot-spot auto-ignition and expansion).
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