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Abstract 

In this paper, a HLL (Harten Lax van Leer) approximate Riemann solver with MUSCL scheme 
(Monotonic Upwind Schemes for Conservative Laws) is implemented in the presented FV (Finite 
Volume) model. The presented model is used to simulate different dam-break flow events to verify its 
capability. Four test cases are presented in this paper. In the first test case, a 1-Dimensional (1D) dam-
break flow is simulated over a rectangular channel with different slope limiters of the FV model (namely 
Godunov, Superbee, Minmod, van Leer, and van Albada). The second test case consists of a simulation of 
shallow water discontinuous dam-break flow over a dry-downstream bed channel. The third test simulates 
the shallow water dam-break flow with the existence of bed slope and bed shear stress. Finally, in the last 
test, the HLL-MUSCL model used in this paper and some other solver models used in literature are 
compared against the referred exact solution in dam-break flow application. The presented HLL-MUSCL 
scheme is found to give the best agreement to the exact solution.  

 
 
 
Introduction 

 
In the rise of the awareness on hazards that are 

caused by dam-breaking events on different 
hydraulic flow systems, studies using computer 
modelling environment of such events have been 
given serious attention in the recent years. The 
virtual-prototyping prediction tools, that are 
modelled, give failure analyses to dams in different 
size and geometry, and a warning system can then 
be equipped by combination of those prediction 
tools with satellite data capturing. In statistical 
record, there were more than 200 dam failures 
reported in large dam-systems around the world in 
the last century, and they had caused a loss of more 
than 8,000 lives besides millions dollar of loss [1].  

In the numerical simulation of dam-break flow, 
there are a lot of schemes and solvers that have 
been employed for its prediction. However, the 
most popular schemes are usually associated with 
the use of Riemann solvers, as they were found to 
be more consistent in handling the shock-capturing 
event on most rapidly varied free-surface flows [2].  

 
 
 

Jha et al. [3] proposed the use of flux-difference-
splitting (FDS) Lax-Wendroff scheme in solving 
the sudden closure of sluice gate and flood wave on 
the dam-break flow system. Seaid [4] adopted the 
total-variation-diminishing (TVD) Runge-Kutta 
scheme to solve the wet bed sluice gate dam-break 
and circular dam-break problems. Tseng and Chu 
[5], and Vincent et al. [6] had both used the TVD 
MacCormack scheme to investigate wet bed dam-
break application; besides, Tseng [2] had also look 
into the same problem using Roe and essentially 
non-oscillatory (ENO) scheme. All of them were 
utilising approximate Riemann solver in their 
solution scheme formulation, and showed 
reasonable results on simulating dam-break flow.   

In this paper, the shallow water equations are 
used as they show supremacy in representing the 
large water flow system; although their numerical 
simulation can be difficult due to their requirement 
of special treatment for achieving the conservative 
properties to avoid any spurious oscillation during 
their simulation [7, 22]. The solution scheme 
employed by this paper is the HLL approximate 
Riemann solver with MUSCL scheme. Compared 
with the exact Riemann solver that considers multi-
wave constant stages in the smallest unit cell of 
finite volume method (FVM), the approximate 
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Riemann solvers are more practical in terms of 
computational cost [8-10]. The use of the MUSCL 
scheme in the HLL approximate Riemann solver 
has two distinctive advantages, 1) it always keeps 
the HLL solver in its conservative form, and 2) it 
allows the HLL solver to achieve a second order of 
accuracy in its computation. A two-stage Hancock 
(predictor-corrector) scheme has been cooperated 
into the HLL-MUSCL solver in this paper. This 
two-stage Hancock scheme was proven to be 
efficient in numerical modelling of dam-break flow, 
as showing by literature [10-12].  
 
Governing Equations  
 

By assuming a water flow in the depth-averaged 
form, and by ignoring the effects of wind shear and 
Coriolis force, the governing equations of shallow 
water approach can be constructed as equations (1-
8). In this paper, both the St Venant and shallow 
water equations are used for the test cases 
simulation.  
 
St Venant Equations  
 

Before the existence of complicated computer 
schemes and applications for dam-break flow 
simulation, St Venant equations are the most 
popular approach used to understand and 
investigate those applications due to its simplicity 
and effectiveness to represent the flow in a single 
streamwise flow direction [6, 13].  
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where, U%  represents the conservative water depth 
and velocities vector, xE%  represents the inviscid 
numerical flux vector in x-direction (water flow 
direction) and SQ%  represents the source term 
vector. t  and x  denote the time and x-directional 
domains respectively. For each of the vector, their 
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In equation (2), φ  = geopotential, where g hφ = ⋅ ; 
h  = water height; g  = gravitational acceleration; 
and u  = velocity in x-direction. oxS  and fxS  are 
the bed slope and bed shear stress respectively in x-
direction, and they are expressed as:  
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where, gz  = bed surface geometrical elevation; n  
= Manning’s friction coefficient; and v  = velocity 
in y-direction (which in 1D problem 0v = ).  
 
Shallow Water Equations  
 

In the recent years, research of different 
hydraulic system, like oceans, rivers and dams, are 
often related to the use of shallow water approach 
as the vertical properties of those systems are 
usually very small and ignorable when compared 
with the properties of the other two directions of 
vector.  
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In shallow water formulation, yG% , oyS , and fyS  

represent the numerical flux vector, bed slope and 
bed shear stress in the y-direction. The oyS  and fyS  
can respectively be expressed as:  
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The St Venant equations (1-4) and the shallow 

water Equations (5-8) are used for the simulation of 
1D and 2D depth-averaged dam-break flow test 
cases in the Section of Numerical Simulations and 
Results.  
 
Riemann Solver Scheme 
  

In the early development of the representation of 
shallow water flow, studies were often carried out 
on the analytical basic. Their solutions are usually 
hard to comprehend or explain. In 1981, Roe [14] 
had proposed an idea for CFD (computational fluid 
dynamics), in which he proposed that for any 
conservative fluid flow, its solution can be found by 
assuming a numerical flux on its flow properties. 
The Riemann solver was used in his study by an 
approximate scheme, which was believed to be 
accurate in different flow conditions. In the more 
recent research, Toro [9] has proven that HLL-type 
approximate Riemann solver is one of the most 
accurate approximate Riemann solvers.  

Godunov [16] has suggested that numerical 
fluxes of an inviscid fluid flow simulation can be 
obtained by solving the Riemann problem of the 
flow locally in each divided numerical cell or unit 
of consideration under a meshed flow system. He 
suggested that the difference properties at each left 
and right side of the divided numerical cell is the 
flux that changes the flow properties locally. Even 
through, the idea of Godunov to solve a flow by 
considering the flux difference on the left and right-
hand side of the FVM solution cell was 
theoretically founded, Godunov scheme is too 
idealised to constraint the fluxes into the actual 
value of right or left side solution of a numerical 
cell. Inspiring by the weakness of Godunov 
scheme, Harten et al. [17] had suggested a new 
Godunov-type scheme, called Godunov-type HLL-
Riemann approximation scheme. The scheme is 
proven to be robust in most of the flow simulation. 
Besides, the HLL-approximate Riemann solver 
with Godunov-type scheme of numerical flux also 
possess with an upgradeable order of accuracy 
according to different applications.  
 

HLL-Approximate Riemann Solver  
 

In HLL approximate Riemann solver, wave 
speeds, LS  and RS  are used to separate the HLL 
approximate Riemann solution cells into three 
regions (left, right and * regions), hence 3 U%  can 
be getting from this solution ( LU% , RU% , and *U% ), 
see Figure 1. 

 

 
Fig. 1. HLL Approximate Riemann Solution Cell  

 
The in viscid solution of the indicated cell can 

be written in conservation law as  
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And by applying the in viscid solution of 

equation (9) into the control volume of AOBCEDA 
(in Figure 1), we can get 
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where, subscripts L  and R  represent left and right 
sides of the solution cell, and F%  = numerical flux 
vector of the solution cell.  

By assuming the control volume of AOEDA and 
OBCEO are acting in the same behaviour as the 
control volume of AOBCEDA, we can reform 
equation (10) into two separate equations for the 
left cell (AOEDA) and the right cell (OBCEO) 
using the common numerical flux at * region, *F% .  
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By eliminating *U%  at equations (11-12), we can 
get a useful expression for *F% , and it can be 
expressed in the conditions of:  
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where, LS  and RS  can be expressed respectively 
as:  

{ }min , * *L L LS u uφ φ= − −          (14) 

and, { }min , * *R R RS u uφ φ= + +       (15) 

which, *u , and *φ  are 

            ( )1*
2 L R L Ru u u φ φ= + + −              (16) 

and, ( ) ( )1 1*
2 4L R L Ru uφ φ φ= + + −       (17) 

  
In order for HLL approximate Riemann solver 

to compute a dry bed dam-break flow, extra 
conditions is needed for RS  and LS , and the 
conditions are  
For the left dry bed ( 0Lh = ) 

     2L R RS u φ= −                                  (18) 

               R R RS u φ= +                      /             (19) 

For the right dry bed ( 0Rh = ) 

               L L LS u φ= −                                   (20) 

               
2R L LS u φ= +

                                (21) 
  
MUSCL Scheme 
 

The robustness of MUSCL-type (monotonic 
upwind schemes for conservative laws) scheme is 
demonstrated by Marques and Pereira [15], which 
MUSCL-type schemes show a closer result with the 
exact solution of the fluid flow profiles compare to 
other schemes, like WAF (weighted averaged flux) 
scheme. Unlike the constant approximation of LU%  

and RU%  by original Godunov scheme, in MUSCL-

scheme, both LU%  and RU%  are changing in a linear 
approximation according to their adjacent cells. The 
MUSCL scheme can keep the FV model at a 
second order of accuracy in space domain. It can be 
expressed as: 
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                and, 1/ 2 1i i iU U U− −Δ = −% % %                     (26) 
i  represents the space step.  
  

There are 5 types of different slope limiter, Ψ , 
which is presented in this paper, Godunov, 
Minmod, Superbee, van Leer and van Albada slope 
limiters (see Table 1). Those slope limiters are 
tested in Section 5.1 for their accuracy to represent 
a shock-capturing dam-break event. 

 
Table 1 

Slope Limiters 
 

Slope Limiter ( )rΨ %  

Godunov 0 
Minmod max (0, min (1, r% )) 
Superbee max (0, min (2 r% , 1), min ( r% , 2)) 
van Leer  ( r% +| r% |) / (1+| r% |) 

van Albada ( r% + 2r% ) / (1+ 2r% ) 
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Time Integration 
  

In this paper, a Hancock-two stage predictor-
corrector scheme is utilised to update iU%  in time 
step. It has the ability to maintain stability and to 
achieve second order of accuracy in time domain 
for the flux-limiting scheme.  
 
Predictor Step 

( )1/2
1/2 1/22

+
+ −

Δ
= − −

Ω
% % % %N N N N

i i i i
i
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Corrector Step 
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where, Ω  = cell volume, and N  represents the 
time step.  

For tΔ , a stability criterion is followed to 
ensure the utilised tΔ  does not exceed its 
maximum allowable limit.  
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where, ⋅q s  = x yu v⋅ + ⋅s s ; s  = resultant normal 

unit vector; xs  and ys  = normal unit vectors in x 
and y-direction respectively; c  = celerity wave = 
φ ; and, CFL  = Courant number, which its value 

is limited to 0 1CFL< ≤ . For the unity CFL , the 
results getting is less accurate and more instable 
than the results getting from a smaller CFL  
number, although the smaller CFL  requires more 
computational cost.  
 
Boundary Condition 
 

In this paper, in order to maintain a high 
accuracy in the space domain, ‘double boundary’ 
condition is used, where two extra ‘ghost’ cells are 
used outside the computational space domain for 
the boundary conditions fitting. The boundary 
conditions used in this paper are divided into two 
categories, solid and open boundaries. Solid 
boundaries work in a reflective basic, where, water 
flow properties are reflected into opposite direction; 
however, open boundaries work in a transmissive 

basic, where, water flow properties are allowed to 
transfer-through into the next computational cell.  
Solid Boundaries  
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u uφ φ

+
= − , 

( ) ( )1m m
v vφ φ

+
= −  
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Open Boundaries  
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where, m  = last space step in computation.  
 
Source Terms  
 

Hu et al. [10, 12], Mingham, and Causon [11] 
have consistently suggested that the source terms of 
any flow simulation cause no much of numerical 
instability in its effect towards the solutions of 
shallow water equations (for new source terms 
treatment study refer to Pu et al. [22]). Therefore, 
the complex solution of source terms is not 
necessary here. In this paper, a more direct 
approach compare to the inviscid terms solver, is 
used for solving source terms.  

 

( )1N N N
i i Sx iU U t Q+ = − Δ %% %                (30) 

 
In the source terms simulation of a flow, HLL 

approximate Riemann solver is more powerful than 
most of the other approaches, like Roe approximate 
Riemann solver, which Jacobian matrix is involved 
in their solvers. It is because Jacobian matrix is 
having difficulty in handling distorted mesh of a 
flow system, and hence the more complicated 
solver of the source terms is required (see Delis 
[20]).  
 
Numerical Simulations and Results  
 

In this paper, four test problems are investigated 
to verify the numerical scheme developed in the 
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previous sections. In the first test problem, a 1D 
dam-break flow is tested with different slope 
limiters of the FV model (namely Godunov, 
Superbee, Minmod, van Leer, and van Albada) to 
determine their accuracy. The second test problem 
is used to investigate the shallow water 
discontinuous dam-break flow over a dry-
downstream bed channel. As a continuation, in the 
third test the shallow water dam-break flow is 
simulated with the existence of source terms (bed 
slope and bed shear stress). Finally in the last test, 
the proposed HLL-MUSCL solver and two other 
solvers proposed by literature (Roe-HLLE [20], and 
Petrov-Galerkin [21] solvers) are compared against 
the exact solution in a dam-break flow application. 
The CFL  number used in all 1D test problems is 
0.95. It demonstrates the numerical stability of the 
proposed solver. The CFL  number for the shallow 
water test problems is set to be about 0.3-0.4, in 
order to avoid numerical difficulties during 
simulation.  
 
Test 1: Slope Limiters Comparison  
 

In this test, a 1.0m long channel is simulated 
with upstream reservoir headwater, hUS = 1.0 m, 
and downstream tail water, hDS = 0.01 m, separated 
by a thickness-free dam located at the middle of the 
channel. A schematic of the dam-break problem is 
shown in Figure 2. The channel is flat, straight and 
frictionless. The water in the channel, which 
initially at rest, is allowed to flow through the dam 
when it is instantly and completely removed at 

0t = . In this simulation, 100 computational cells 
with simulation time of 0.25s are used.  

 

 
 
Fig. 2. Schematic of 1D Dam-Break Problem  

 
 
Fig. 3. Water Height Simulation with Different Slope 
Limiters 
 

The simulation is conducted by using different 
slope limiters on the FV model. Besides, an exact 
solution derived from the analytical approach is 
also used to compare with the different slope 
limiter results, since it is commonly used as the 
benchmark solution in numerical research. By 
referring to Figures 3-4, one can see that, in 
general, all slope limiters (Godunov, Superbee, 
Minmod, van Leer, and van Albada) are simulated 
results of good agreement with the exact solution. 
However, van Leer and van Albada slope limiters 
are showing the best agreement with the exact 
solution (refers to the enlarged portions at Figures 
3-4). Further comparing those 2 slope limiters, one 
can identify that van Leer slope limiter is showing a 
better result than the van Albada slope limiter 
(refers to the enlarged portion of Figure 4). Due to 
the supremacy of the van Leer slope limiter over 
other slope limiters, it is used in the rest of the test 
problems that are discussed in the coming sections.  

 

 
 

Fig. 4. Velocity Simulation with Different Slope 
Limiters 
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Test 2: Shallow Water Discontinuous Dry Dam-
Break Flow 
 

Shallow water shock wave is a natural turbulent 
water flow event to test the stability and capability 
of a proposed numerical model, as it requires high-
resolution shock-capturing numerical schemes to 
avoid any numerical instability. In this test 
problem, a 200 m ×  200 m rectangular channel is 
considered with a 15m thick dam at the middle. The 
dam is having a partial dam-break or rapidly 
opening of sluice-gap at the starting of the 
simulation (refers to Figure 5). Initially, the 
upstream headwater is set to 10.0m, whereas 
downstream tailwater is set to dry. In the numerical 
simulation, 42×42 computational cells are used, 
where Δx = Δy = 5 m. The simulation time is 6.0 s. 

 

 
Fig. 5. Dam Break Layout for Inviscid Shock Wave 

 
The results of water height, u-momentum and v-

momentum are presented at Figures 6-8 
respectively. At the instant of dam breaking, water 
is released through the 75m-wide sluice-gate. A 
forward bore wave is formed at downstream of the 
channel; while negative depression wave is 
generated at the upstream. From Figure 6, one can 
observe that both bore and depression waves are 
well-formed in the simulation of the proposed FV 
model. The results of this simulation are having 
good agreements with those presented in various 
literatures like, Valiani et al. [18], Caleffi et al. 
[19], and Mingham, and Causon [11], who used this 
same test case in their numerical studies. From 
Figures 7-8, one can observe that the u- and v-
momentum are at their maximum absolute 
magnitudes at the position of the sluice-gate. It is 
caused by the changing from bore to depression 
wave of water flow in the sluice opening. During 
the process of changing depression to bore wave, 
the water flow is associated with a great deal of 

velocities change in x and y directions, hence 
causing the u-momentum and v-momentum to be in 
their maximum absolute magnitudes (the results are 
also agreeable to the numerical tests done by 
Valiani et al. [18], and Seaïd [4]). 

 

 
 

 
 
Fig. 6. a) 3D Water Height, and b) 2D Water Height 
Contour Diagrams of Dry Downstream Dam-Break Flow 
Simulation 

 

 
 
Fig. 7. u-Momentum of Dry Downstream Dam-
Break Flow Simulation 
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Fig.8. v-Momentum of Dry Downstream Dam-Break 
Flow Simulation 
 
Test 3: Discontinuous Dam-Break Flow with 
Source Terms  
 

As a continuation of Test 2 in Section 5.2, 
source terms (bed slope and bed shear stress) are 
added into the dry dam-break flow to find their 
effects   on   water   flow.   Initially,   the   upstream  

 
 

headwater is set to 20.0m and downstream tail 
water is set to dry. The bed slope and friction are 
introduced in this simulation, where 0.1oxS = , 

0oyS =  and 0.03fx fyS S= = . The simulation 
conditions are similar to those presented at Figure 
5, except the 75m sluice-gate opening is situated 
30m from the left of the dam. The change is able to 
test the ability of meshing boundary conditions to 
assign the dam walls.  

In Figure 9, the simulation results of sloping 
frictional dam-break channel over a dry 
downstream bed are presented in different times. 
Compared to the inviscid dam-break flow in Test 2, 
where the water flow spreads laterally and radially 
when it reaches downstream of the channel; in this 
test problem, water flows rapidly in an decline 
manner at downstream of the channel. Caused by 
the bed slope and friction inputted into the 
simulation, water flow is not spreading wide at the 
downstream, but being pulled by gravitational force 
to flow directly to  the  end  of  the  slope (refers to 
t =10 s diagram in Figure 9).  
 

 
 

Fig. 9. 3D Water Height of Dry Downstream Dam-Break Flow Simulation with Bed Slope 
 and Friction at Different Times  
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From the results of Figures 10-12, we can 
observe that in general the proposed HLL-MUSCL 
model is presenting a closer result to the exact 
solution compared to Roe-HLLE [20] and Petrov-
Galerkin [21] models. The water height diagram 
presented in Figure 10 shows the Roe-HLLE 
solution is depleted away from the exact solution at 
the start of depression wave and the end of bore 
wave formation, and the Petrov-Galerkin solution 
shows a huge numerical oscillation at the 
depression wave generated. In contrast, the 
proposed HLL-MUSCL model shows the best 
agreement to the exact solution. In Figure 11, the 
water discharge distribution through the dam-break 
channel is presented, and the result from the 
proposed HLL-MUSCL model is compared with 
the results from the Roe-HLLE model and the exact 
solution. Again, the bore and depression wave 
formation of the Roe-HLLE model simulation is 
depleted away from the exact solution if compared 
to the proposed HLL-MUSCL model simulation. If 
one refers to Figure 12, the single peaking jump 
results are detected in the Froude number 
distribution across flow domain. The single peaking 
jump is caused by the supercritical condition at the 
end of the bore wave formation. The location of the 
peaking jump at the Froude number for the 
proposed HLL-MUSCL solution (which happens at 
the location about x = 1750 m) is also presented 
more accurately than the Roe-HLLE solution 
(which happens at the location about x =1600 m), if 
compare with the exact solution (which happens at 
the location about x = 1800 m). In short, the 
proposed HLL-MUSCL model is well agreed with 
the exact solution, and it is a highly accurate and 
robust approximate Riemann solver even a high 
CFL  number is used. 

 

 
 

Fig. 10. Water Height Results with Exact Solution and 
Different Approximate Riemann Solvers (Proposed 
HLL-MUSCL, Roe-HLLE [20], and Petrov-Galerkin 
[21])  

 
 
Fig. 11. Water Discharge Results with Exact Solution 
and Different Approximate Riemann Solvers (Proposed 
HLL-MUSCL, Roe-HLLE [20]) 

 

 
 

Fig. 12. Froude Number Results with Exact Solution and 
Different Approximate Riemann Solvers (Proposed 
HLL-MUSCL, Roe-HLLE [20]) 

 

Conclusions  
 

In this study, a HLL-MUSCL approximate 
Riemann solver is successfully implemented in a 
FV model. The proposed approximate Riemann 
solver is robust, efficient and able to avoid 
inaccurate numerical oscillations or depletions 
when tested against the exact solution. The 
proposed model is accurate in simulating the 
shallow water discontinuous shock wave across any 
dam-break channel with dry sections. It is also 
capable in handling the unsteady supercritical 
condition of a flow. Besides, the proposed model is 
also having the capability in simulating any 
frictional channel with steep slope. The capabilities 
of the proposed model are demonstrated by the 
simulations of different flow test problems in dam-
break application. 
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