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Abstract 

The future prospects for biomedical and environmental engineering applications of heterogeneous 
materials on the basis of nano-structured carbonized rice husk are studied.    

The use of the nano-structured carbonized sorbents as delivery vehicles for the oral administration of 
probiotic microorganisms has a very big potential for improving functionality, safety and stability of 
probiotic preparations. The other possible mechanism of nano-structured carbonized sorbents is wound 
healing activity; the results demonstrated that the use of this material may offer multiple specific 
advantages in topical wound management. For bioremediation purposes nano-structured carbonized 
sorbents can be applied as bio-composite sorbent with immobilized microbial consortium consisting of 
bacterial strains with high oil-oxidizing activity.   
 

 
 

Introduction 
 
The fact that microorganisms prefer to grow on 

liquid/solid phase surfaces rather than in the 
surrounding aqueous phase was noticed long time 
ago [1]. Virtually any surface – animal, mineral, or 
vegetable – is a subject for microbial colonization 
and subsequent biofilm formation. It would be 
adequate to name just a few notorious examples on 
microbial colonization of contact lenses, ship hulls, 
petroleum pipelines, rocks in streams and all kinds 
of biomedical implants. The propensity of 
microorganisms to become surface-bound is so 
profound and ubiquitous that it vindicates the 
advantages for attached forms over their free-
ranging counterparts [2]. Indeed, from ecological 
and evolutionary standpoints, for many 
microorganisms the surface-bound state means 
dwelling  in  nutritionally  favorable,  non-hostile 
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environments [3]. Therefore, in most of natural and 
artificial ecosystems surface-associated 
microorganisms vastly outnumber organisms in 
suspension and often organize into complex 
communities with features that differ dramatically 
from those of free cells [4].   

Initially introduced as just an imitation of 
Mother Nature, artificial immobilization of cells 
and enzymes has now transformed itself into a 
valuable biotechnological instrument. Its growing 
practical application and development over years 
led to appearance of fascinating novel microbial 
and enzymatic technologies [5-7]. Research on the 
immobilized biocatalysts is currently conducted in 
many laboratories around the world. In Japan, USA 
and other countries immobilized microbial cells 
have been successfully applied for adsorption of 
heavy metals from dilute solutions [8, 9], for 
purification of sewage [10] as well as for 
intensification of microbiological technologies 
(production of antibiotics, organic acids, sugar 
syrups, fermented drinks, etc.) [11]. It was shown 
that immobilized cells allow conducting 
biotechnological process over extended periods of 
time, under strict control of the process kinetics, 
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product quality and microbial activity [12]. 
Immobilization of cells can be carried out mainly 
by two methods: by entrapment of the 
microorganisms into porous polymers or 
microcapsules or by binding to an organic or 
inorganic support matrix (adsorption methods). The 
latter is considered to be more suitable for retaining 
cell viability [13]. Adsorption is also one of the 
easiest methods of immobilization of microbial 
cells, especially those that adhere naturally to the 
surfaces of materials [14]. It should be noted here 
that rapid development of technology of receipt of 
the immobilized biocatalysts resulted in 
contradictory results. So, the first attempts of 
immobilization were related with adsorption of 
enzymes and cells on arboreal sawdust and coal. In 
these experiments, adsorption was accompanied by 
a considerable desorption. In this connection, 
regarding the simplicity and availability of 
adsorption immobilization it has been having a 
reputation like “easy come easy go”. Though never 
forgotten, in the last decade adsorption methods of 
immobilization gained increasingly more interest 
caused by considerable expansion in assortment of 
carriers with outstanding absorption properties, by 
better understanding of mechanisms and 
approaches aimed on firm attachment of biocatalyst 
to a carrier and by development of new methods of 
surface conditioning [12]. 

The adhesion of microbial cells to surfaces is 
rendered mainly by Van der Waals forces, ionic and 
covalent interactions, with considerable 
contribution of various microbial exopolymers [13]. 
Traditionally, adsorption immobilization is 
regarded as consisting of several relatively distinct 
stages, including a) adsorption of dissolved 
macromolecules on the surface; b) diffusion and 
concentration of cells from the bulk phase to the 
surface; c) reversible attachment of cells; d) 
biosynthesis of anchoring polymers by the cells 
which leads to an irreversible attachment stabilized 
by covalent bonds and entropy-driven interactions. 
Selection of an appropriate adsorbent, especially for 
industrial process is based on several criteria. Most 
important among them are: a) material’s costs and 
availability in large amounts; b) simplicity and 
efficacy of the immobilization process; c) 
preservation of cell viability; d) adsorbent’s 
specific surface (capacity). There is no an ideal 
material so far but many these requirements are met 
by inorganic (sand particles, ceramics, metallic 
hydroxides and porous glass) and organic (charcoal, 
wood shavings and cellulose, polyurethanes) 
carriers. For example, porous glass-based fixed-bed 

reactors are successfully used for of the aerobic 
[15] and anaerobic [16] biotechnological 
transformations.   

The immobilization process can be characterized 
by several parameters: initial biomass loading, 
retainment of biomass, strength of the adhesion, 
retainment of the activity of the biocatalyst, 
effectiveness of mass transfer, engineering 
realization and general operational stability. When 
microorganisms are immobilized by adsorption the 
initial cell loading of the immobilization matrix is 
one of the limiting factors [17]. The cell loading on 
the adsorbent is influenced by the physical and 
chemical properties of the adsorption material, of 
the microorganism to be immobilized and by the 
composition and parameters of the surrounding 
medium. Another critical point for a system with 
the cells immobilized by adsorption is the 
retainment of the biomass on the surface. The 
retainment is generally ruled by the adhesion 
strength, which can be described in kinetic and in 
thermodynamic terms.   

Concerning the biocatalyst viability/activity 
retaining, the immobilization by adsorption is 
probably the gentlest existing method [14]. Because 
the adsorptive fixation occurs under “standard” 
conditions, no changes of the cultivation parameters 
are necessary to produce the immobilized 
biocatalysts. Compared to cell entrapment in 
organic polymers it can generally be assumed that 
during adsorption also the enzymatic activity can be 
preserved at a high level. Very often the activity of 
only one enzyme is responsible of the catalytic 
process of interest. In such a process the stability is 
characterized by the half-life of the enzyme. 
Enzymatic “half-lives” up to two years have been 
reported [18]. 

Though adsorbed biocatalyst systems are easy to 
run and used for many years, there is still enough 
space for optimization [13]. Development and 
probation of new types of heterogeneous composite 
materials, possessing advanced properties for 
biological catalysts, as carrier systems, as filters 
etc. on the basis of attached enzymes or whole 
microbial cells is of great importance for 
biotechnological processes. These and other tasks 
are addressed by engineering enzymology – a 
scientific and technical discipline combining 
principles, theoretical approaches and practical 
methods of chemical and enzymatic catalysis, 
microbiology, chemical technology and 
biochemistry. Recent efforts in engineering 
enzymology are focused (among others) on the 
following directions:  
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• development and optimization of 
immobilization methods leading to novel 
biotechnological and biomedical applications;  

• search of materials satisfying strict 
requirements of biotechnological processes 
(such as non-toxicity, mechanical stability, 
etc.);  

• construction of bio-composite materials based 
on individual enzymes, multi-enzyme 
complexes and whole cells, targeted on 
realization of specific industrial processes;  

• development of methods for modification of 
surface properties aimed on fine tuning and 
better control of the “biocatalyst-carrier” 
interface.   

In the light of these challenges, nanostructured 
carbonized materials appear as an attractive 
substrate for designing and production of cost-
effective high-performance bio-composite 
materials.  

 
Synthesis of nanostructured carbonized materials  

 
Adsorption properties of carbonaceous 

adsorbents are used in purification and recovery of 
valuable substances for very long time. Active 
carbons  are used in oil processing, petroleum  

 

chemistry, wine making, butter production, etc. 
[19-21]. They are increasingly applied in medicine, 
for example, to remove toxins from physiological 
liquids [22]. The last years are characterized by the 
intensive studies on carbon nanotubes and 
nanostructured carbon sorbents (NCS). There are 
many methods suitable for synthesis of NCS, such 
as electric arc discharge, laser vaporization and 
chemical vapor deposition techniques [23-25]. In 
the Institute of Combustion Problems (Almaty, 
Kazakhstan) following methods are used for 
obtaining of NCS: flame carbonization, catalytic 
carbonization and synthesis of carbon nanotubes by 
microwave plasma enhanced chemical vapor 
deposition (MPECVD). It was found that the 
transition metals like Fe, Ni, Co, their oxides and 
alloys are very effective catalysts for carbon nano-
structuring. Another interesting approach used was 
the carbonization of walnut shells, grape seeds, 
apricot stones, wheat bran, rice husk, etc. in 
presence of activating agents. The samples were 
carbonized according to the procedure developed in 
the R.M. Mansurova Laboratory of Carbon 
Nanomaterials at the Institute of Combustion 
Problems, using a gas-flow setup (Fig. 1) within 
temperature range of 250-900°C in argon flow (50-
90 cm3/min). 

 

 
 

Fig. 1. Pilot setup for flame carbonization of diverse raw plant materials. 
 
During carbonization the major mass loss 

occurred within temperature range 150-500°C, 
where large amount of volatile and liquid products 
(65-75 % of total mass) were released. In the case 

of rice husk, the reduction of mass was found to be 
around 50% which is related to high content of 
silicon in the samples.  
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products, etc. [19-21, 28]. Their use in medicine 
and health applications to combat certain types of 
bacterial ailments and for the adsorptive removal of 
certain toxins and poisons, and for purification of 
blood, becomes increasingly popular [29, 30]. 
Studies in last years have brought data on high 
adsorption ability of carbonized materials in respect 
of mammalian cells [31], microbial cells [32] and 
enzymes [33, 34]. 

The samples we used for microbial adsorption 
had been carbonized according to the procedure 
developed at the Laboratory of Hybrid 
Technologies in the Institute of Combustion 
Problems, Almaty, Kazakhstan. A flow set-up was 
used with following parameters: temperature range 
650-800°C in argon flow (50-90 cm³/min).  

Different temperatures and flow regimes caused 
alterations in the pore structure and therefore 
resulted in different properties of the activated 
carbon [35, 36]. The adsorbents obtained from plant  

material showed themselves as very versatile and 
efficient because of their extremely high surface 
area, multiple functional groups and the macro-pore 
structure which is highly suitable for bacterial 
adhesion.  

The interaction between the cell and the 
adsorbing surface is dictated by multiple 
physicochemical variables, reviewed in many 
brilliant works [37-39]. Obviously, an effective 
attachment depends on chemical and physical 
properties of both adsorbent and cells. The 
chemical groups on the surface of the carbonized 
materials were mentioned in the previous section. 
In this respect, microbial cells demonstrate even 
larger versatility. Their surfaces can be hydrophilic 
or hydrophobic, carry positively or negatively 
charged expose various specialized chemical 
groups and even release polymers (adhesive 
glycoproteins, polysaccharides, proteins, teichoic 
acids, etc. (Fig. 6). 
 

 
Fig. 6. Principle functional groups on the surface of microbial cells:  

1) phosphate; 2) amine; 3) carboxyl; 4) carbonyl; 5) hydroxyl. 
 

Molecular biological and biochemical studies on 
cell adhesion focus predominantly on identification, 
isolation and structural analysis of attachment-
responsible biological molecules and their genetic 
determinants. Physiological aspects of cellular 
adsorption concern mainly the influence of 
cultivation parameters (temperature, nutrition 
compounds, oxygen concentration, presence of 
antibiotics and vitamins) on bacterial adherence-
related phenotype, adhesion molecules metabolism 
and surface structural organization [40]. Once in 
initial contact with a surface, microbes develop 
different types of attachment behaviors. Motile 
attachment behavior of P. fluorescens allows the 
flagellated cells to move along surfaces in a semi-
attached condition within the hydrodynamic 
boundary layer, independent of the flow direction 
[41]. Reversible adhesion of E. coli cells with 
residence times of over several minutes on a 
surface has been described as “near-surface 
swimming”[42]. In the case that microbes can no 
longer move perpendicularly away from the surface 
the term “irreversible attachment” is used [14]. 

A net electrostatic charge on the NCS and the 
cell surfaces affects the distribution of ions in the 
surrounding interfacial region, resulting in an 
increased concentration of counter ions (ions of 
opposite charge to that of the particle) close to the 
surface that results in the formation of an electric 
double layer. This layer consists of two parts: an 
inner region (Stern layer) where the ions are 
strongly bound and an outer (diffuse) region where 
they are less firmly associated.  

Thermodynamically, spontaneous cell 
adsorption onto a surface results in decrease of 
Gibbs free energy but sometimes there is a 
significant energy barrier due to electrostatic 
repulsion. Existing theoretical models predict that 
there are two regions where the strongest attraction 
forces between two surfaces occur (the “primary” 
and “secondary” minima, at distances of ∼0.5 nm 
and ~5 nm, correspondingly). Generally is assumed 
that microbes adhere reversibly to the “secondary 
minimum” and irreversibly to the “primary 
minimum” with the aid of cell surface appendages 
that can pierce the repulsive energy barrier [12, 14].  
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Performance of bio-composite carbonized 
materials in probiotic applications 

 
In our model experiments in vitro, NCSs 

showed outstanding compatibility with many 
bacterial strains, indicating their high potential in 
miscellaneous branches of biotechnology and 
medicine. One of such applications of great interest 
is design and approbation of new generation of 
probiotic preparations for preventions and 
correction of micro-ecological disorders in 
gastrointestinal tract of the humans and animals. 
Environmentally, nutritionally and infection-
induced pathologic shifts of gastrointestinal tracts’ 
micro-ecology often lead to the increase in amount 
of gram negative bacteria, particularly of 
Enterobacteria. It leads to the translocation of 
bacterial toxic products from bowels to other 
organs causing development of endotoxinemia and 
other pathologies. 

Probiotic is a viable mono-or mixed culture of 
beneficial microorganisms applied to animals or 
humans that sustainably improves properties of the 
indigenous microflora. The term “probiotics” was 
first coined by Lilley and Stillwell in 1965 [43]. 
R. Fuller later defined probiotics as "A live 
microbial feed supplement which beneficially 
affects the host animal by improving its intestinal 
microbial balance." [44]. Over years, the term 
“probiotics” has undergone several more definitions 
arriving at the final one, officially adopted by the 
International Scientific Association for Probiotics 
and Prebiotics, outlining the breadth and scope of 
probiotics as they are known today: “Live 
microorganisms, which when administered in 
adequate amounts, confer a health benefit on the 
host” [45]. Mechanisms of probiotic action are 
numerous and include:  
• Prevention of adhesion of pathogen to host 

tissues; 
• Stimulation and modulation of the mucosal 

immune system by reducing the production of 
pro-inflammatory cytokines through action on 
NF-kB pathways; 

• Improvement of intestinal barrier integrity and 
up-regulation of mucin production; 

• Killing or inhibiting the growth of pathogens 
through the production of bactriocins or other 
products such as acids or peroxides, which are 
antagonistic toward pathogenic bacteria. 

Over past decades, probiotics have been 
extensively studied for their health-promoting 
effects and have been successfully used to control 

gastro-intestinal diseases. As shown above, the 
mechanisms of probiotic action appear to link with 
colonization resistance and immune modulation. 
Since Bifidobacterium and Lactobacillus species 
belong to normal intestinal microflora of humans, 
majority of probiotics was created on the basis of 
these bacteria. Lactic acid bacteria can produce 
numerous antimicrobial components such as 
organic acids, hydrogen peroxide, carbon peroxide, 
diacetyl, bacteriocins, as well as adhesion 
inhibitors, which strongly affect microflora.  

Many probiotic preparations serve for an 
improvement of micro-ecological situations in 
bowels. Therefore, to reach the destination place, 
probiotic preparations have to pass through the 
stomach and the small intestine, which is 
unavoidably connected with significant reduction 
probiotic bacteria viability. To reduce this 
undesirable effect, several approaches have been 
suggested so far. Montalto et al. administered 
probiotic mix both in capsules and in liquid form 
without observing statistically significant difference 
in bacterial survival [46]. A specially designed tube 
with a reservoir containing probiotics has been 
suggested by Çaglar et al. [47] with some 
encouraging results. However, the search for most 
suitable means of delivery and dosages of 
probiotics continues. One of our aims in this respect 
was to investigate the capacity of the carbonized 
materials as protective media for probiotic bacteria 
immobilized in their pores.  
 
Biological objects 
 

The type strain of lactic acid bacteria, 
Lactobacillus fermentum AK-2 was used in our 
probiotic studies. It possesses excellent probiotic 
potencies duet to its high antagonistic and adhesive 
activities. Rice husk and grapes stones carbonized 
were produced in the Institute of Combustion 
Problems at the al-Farabi Kazakh National 
University in Almaty as described above. 
Lactobacillus cells were adsorbed onto the carrier 
for 24 hours. Unattached cells were rinsed away by 
the isotonic NaCl solution and the firmly attached 
bacteria were incubated for several more days for 
micro-colony formation. After that the prepared 
bio-composite material was examined 
microscopically to ensure successful settlement of 
bacteria.  

In bacteria survival experiments, gastric 
conditions were modeled in vitro by using gastric 
juice received from clinical gastroscopy. Different 
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preparations of L. fermentum in MRS-1 medium 
were incubated in the gastric juice for 1 hour. After 
that the number of viable cells was quantified. 

In vivo experiments were conducted on 6-8 
week old wild rats, previously subjected to an 
experimental dysbacteriosis induced by the 
antibiotic ciprofloxacin. The animals were divided 
into several experimental groups. The control group 
received only the antibiotic in therapeutic dose of 
5 mg/kg body mass; the first group, in addition, was 
fed with liquid suspension of L. fermentum AK-2; 
the second and the third groups received, after the 
induced dysbacteriosis, the same amounts of L. 
fermentum but the bacteria were immobilized on 
grape stones and rice husk, correspondingly.  

As an indicator of the probiotic activity, the 
number of viable Enterobacteria in different parts 
of the rat intestine was measured. Changes in 
detected amounts of gram-negative Enterobacteria: 
such as Escherichia coli, Klebsiella pneumoniae, 
Proteus  vulgaris,  Proteus mirabilis,  Enterobacter  

aerogenes, Salmonella typhimurium, Shigella 
zonnei and Shigella fleexneri were considered as a 
measure of the antagonistic action strength of the 
preparations. For Enterobacteria quantification, 
suspended gut content was incubated on Petri 
dishes with Endo agar. The analyses were 
conducted for 15 days, every day starting from a 
day of antibiotic treatment. Finally, the amount of 
Lactobacillus cells attached to the rat intestinal 
epithelium was directly counted as described 
elsewhere [48]. 

 
Results 
 

Twenty four hours after immobilization 
Lactobacillus displayed very good growth rate and 
began forming micro-colonies on the NCS. The 
data on gastric juice resistance of suspended and 
immobilized preparations of Lactobacillus are 
shown in Table 2.  
 

 
Table 2 

Influence of in-vitro gastric juice treatment on viability of suspended  
and immobilized cells of Lactobacillus fermentum AK-2 

 

Experimental group Concentration of viable cells, ml-1 
Before treatment After treatment 

Suspended culture 3.7 × 109 5.2 × 105 
Grape stone-based bio-composite 1.6 × 109 3.1 × 106 
Rice husk-based bio-composite 1.1 ×109 8.2 × 107 

 
In the suspended Lactobacillus culture after the 

gastric juice treatment the concentration of living 
cells decreased more than 7000 times. In contrast to 
that, the cells being a part of the bio-composite 
materials showed significantly (∼500 times) better 
survival rate. The obtained data strongly suggested 
the protective action of NCSs on the immobilized 
Lactobacillus cells. These results look very 
encouraging in respect of construction of highly 
efficient bio-composite materials having extended 
probiotic activities.  

The next series of experiments was devoted to 
comparative analysis of the antagonistic activity of 
suspended and immobilized probiotic preparations. 
After induced dysbacteriosis, intestinal microflora 
of rats was observed for the period of 15 days. The 
data are presented in the Table 3. 

The data in the table show that after 
ciprofloxacin-induced dysbacteriosis, significant 
increase (∼2 orders) of the undesirable 
Enterobacteria-group microflora was observed, 

manifesting even more during the following 15 
days after the antibiotic administration. This 
occurred both in the gut lumen and in its walls. 
Application of probiotics in the bio composite 
forms, using carbonized rice husk and carbonized 
grape stones led to significant suppression in 
Enterobacteria proliferation and spread. Being 
immobilized on NCS, probiotic bacteria effectively 
inhibited growth of unhealthy bacterial forms, this 
counteracting development of dysbacteriosis. The 
measured inhibitory effects were much higher than 
those shown by suspended probiotic preparation. 
This effect can have been brought by different 
mechanisms, including better survival of probiotic 
bacteria (as was demonstrated above), by their 
increased antagonistic metabolic activity, and 
possibly also by exchange of the bacteria adsorbed 
on NCS and the bacteria attached to the intestinal 
cell walls. 

The possibility that some exchange between the 
cells adsorbed in different locations indeed could 
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Multiple data obtained on rats with different 
levels of bacterial contamination suggest that NCSs 
may offer multiple specific advantages in topical 
wound management through their high adsorption 
ability in respect of both gram-positive and gram-
negative bacteria as well as bacterial toxins. High 
adsorbing activity in respect of bacterial 
lipopolysaccharides has been measured by our 
group in a model studies. The other possible 
mechanism of beneficial action of the NCS, such as 
stimulation of tissue regeneration and binding of 
inflammation mediators, are yet need to be studied.   
 
NCS in bioremediation 
 

Bioremediation is the use of microorganisms, 
their structures and their metabolic pathways to 
remove pollutants. Bioremediation is the most 
promising and cost effective technology widely 
used nowadays to clean up both soils and 
wastewaters containing organic or inorganic 
contaminants [9]. Discharge of pollutant-containing 
wastes has led to destruction of many agricultural 
lands and water bodies. Utilization of various 
microbes and their products to adsorb, transform 
and inactivate pollutants enhances the efficiency of 
the environment decontamination significantly. For 
bioremediation purposes, microbial cells (bacteria, 
fungi, algae, etc.) can be applied alone or in 
combination with some adsorbent, which can 
greatly enhance the viability and activity of the 
biological component. Such bio-composite sorbent, 
unlike mono-functional ion exchange resins, 
contains variety of functional sites including 
carboxyl, imidazole, sulphydryl, amino, phosphate, 
sulfate, thioether, phenol, carbonyl, amide and 
hydroxyl moieties.  

Compared to “classical” sorbents, the bio-
sorbents are cheaper, more effective alternatives for 
the removal of metallic elements, especially heavy 
metals from aqueous solution. Therefore, the bio-
composite sorbents are increasingly widely used for 
heavy pollutants removal. This is now a field of 
intensive investigations focusing on microbial 
cellular structure, biosorption performance, 
material pretreatment, modification, 
regeneration/reuse, modeling of biosorption 
(isotherm and kinetic models), the development of 
novel bio-sorbents, their evaluation, potential 
application and future. A potent supportive 
discipline in bioremediation studies is molecular 
biotechnology, capable to elucidate the mechanisms 
at molecular level and to construct engineered 

organisms with higher biosorption capacity and 
selectivity.  
 

 
 
Fig. 13. Electron microphotograph of the heterogeneous 
bio-composite bioremediation material created on the 
basis of NCS and bacterial cells Pseudomonas 
aeruginosa. 
 

Due to their remarkable properties, 
nanostructured carbon materials such as carbonized 
grape stones and rice husk can be used as sorbents 
for extraction of toxic and radioactive elements. 
Current joint research conducted at the al-Farabi 
Kazakh National University (Microbiology Dept. of 
the Biology Faculty together with the Institute of 
Combustion problems) is aimed to create cost-
effective and sustainable bio-composite materials 
on the basis of microbial cells adsorbed NCS of 
plant origin. Electron microscopy observations 
confirmed that multiple bioremediation-valuable 
cells can successfully attach, survive and proliferate 
inside the porous network of the NCS (Fig. 13). 
The resulting heterogeneous biological composite 
materials possess outstanding pollutant-binding and 
transforming properties accompanied by high 
specificity, depending on the particular microbial 
strain used. In our model experiments, the obtained 
materials specifically adsorbed up to 95% metals 
from solutions. For cleaning of oil-polluted soils, 
we are currently developing a heterogeneous 
composite on the basis of carbonized sorbent and 
an immobilized microbial consortium consisting of 
bacterial strains with high oil-oxidizing activity. 
First encouraging results were obtained in the field 
experiments on oil-polluted soils. 

Summarizing, we would like to emphasize that 
further studies and better understanding of the 
interactions between CNS and microbial cells are 
necessary. The future use of living cells as 
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biocatalysts, especially in the environmental field, 
needs more systematic investigations of the 
microbial adsorption phenomenon. For this purpose 
it is necessary to develop and expand 
interdisciplinary collaboration networks connecting 
biologists, chemists, physicists and biochemical 
engineers. 

This newly gained interdisciplinary knowledge 
could significantly stimulate development of novel 
immobilized bio-catalysts possessing high activity, 
selectivity and stability. Taking into account the 
wide spectrum of abilities of microorganisms and 
carbonized surfaces carriers, this ambitious mission 
does not look like an impossible one. Undoubtedly, 
in the coming years we will see the expanding of 
the application spheres of CNS-based 
heterogeneous composite biomaterials. 
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