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Abstract 
The quantitative theory of diffraction by spiral nanotubes of any chemical composition is offered. Dis-

tribution of diffraction intensities along layer lines and layer planes, strong and diffuse reflexes, 
pseudoorthogonality effect has been simulated and analyzed. The investigation is oriented to electron 
microdiffraction from a single nanotube. 

 
 
 

Introduction 
 
Over the last 50 years, the development of struc-

tural analysis of nanotubes by diffraction methods 
has dedicated, mainly, to nanotubes of coaxial type: 
chiral and nonchiral nanotubes. However, it’s 
seems obvious that the best part of synthesized 
nanotubes belong to spiral type: they represent cone 
structure or roll, when the cone angle is zero [1]. 
Therefore, the necessity for development of struc-
tural analysis of these abundant types of nanotubes 
is driven by further progress of nanotechnology. 

First efforts in investigation of diffraction by 
spiral structures were related with two works of the 
middle of the last century: theoretical study per-
formed by Jagodzinski and Kunze [2] and Whit-
taker’s simulative optical experiments [3]. 
Jagodzinski and Kunze tried to solve the problem 
of describing spiral structure by approximation of 
spiral lattice by semi cylindrical layers. It’s obvious 
that such approximation is quite rough, and diffrac-
tion from this structure will resemble diffraction 
from a cylindrical tube rather than from spiral. 

Whittaker’s simulative optical experiments 
made significant contributions to the investigation 
of spiral structures. In this experiments Whittaker 
performed comparison study of diffraction from 
artificial two-dimensional models of coaxial and 
spiral lattices. By the reason of impossibility of 
making real models of cylindrical lattices  because 

 

of small dimensions of the nanotube), Whittaker 
transferred experiment to larger dimensions – to the 
range of visible light. Thus, he scaled up the size of 
artificial models of cylindrical lattices (masks) in 
accordance with wave length increasing (in com-
parison with X-RAYS). Experimental results al-
lowed him to describe and analyze azimuthal distri-
bution peculiarity of diffraction intensities in recip-
rocal space of coaxial and spiral lattices and to 
make a conclusion that the diffraction patterns from 
coaxial  and  spiral  structures  are  very  similar  and  
differ only in fine details [3].  

The development of quantitative theory of dif-
fraction by spiral nanotubes was being restricted for 
a long period of time by the lack of crystallographic 
description of such structures. In the 80 s of last 
century, description within a framework of model 
of elastic layer was proposed, and on this basis 
quantitative theory of diffraction was developed 
[4]. However, the examination of different types of 
nanotubes is showed that such model is inapplica-
ble  for  best  parts  of  nanotubes,  and  chiral  angles  
that corresponds to the interlayer shift are often 
have significant value. 

In the recent years, the crystallographic descrip-
tion of spiral (roll) nanotubes within a framework 
of model of strong layer and with arbitrary chiral 
angle was made [1]. The description is based on the 
usage of rectangular Bravais lattice, and it’s appli-
cable for nanotubes of arbitrary chemical composi-
tion.  This  fact  is  very important  because of  the re-
port about synthesis of cylindrical structures that 
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have non-hexagonal motif of atoms arrangement 
[5]. Bravais lattice also allows using well-known 
coordinates of atoms of flat analogues of nanotubes 
during the diffraction pattern computation.  

This research is dedicated to the development of 
quantitative theory of diffraction by spiral nano-
tubes of any chemical composition. Because of the 
absence of crystallographic description of cone 
nanotubes, investigation is making on the basis of 
roll structure [1]. Detailed analysis of the problem,  

 

uncovering essential differences between diffrac-
tion from coaxial and spiral structures and compari-
son with experimental data will be done in our next 
articles. 
 
The Diffraction Amplitude 

 
Atoms of roll nanotube (Fig. 1) with arbitrary 

chiral angle  within the model of strong layer 
have cylindrical coordinates [1]: 

 

 ,  (1) 
 

n – index number of spiral-helical site line on the 
surface of  the roll,   –  index number of  lattice site  
on the site line, xj, yj, zj – radial, circular and longi-
tudinal linear coordinates of j-th atom in Bravais 
cell relative to the beginning of this cell, 0 – initial 
radius of a roll, d – thickness of the layer,  = d/2 , 
a and b – parameters (dimensions) of rectangular 
Bravais  cell’s  base,  where  side  a  is  chosen  in  the  
direction closest to the tube axis, and parameter b – 
in the direction closest to the tube cross-section 
(side b is perpendicular to a). Index numbers n and 
 are limited only by dimensions of a nanotube until 

the roll isn’t divided into the turns.   
 

 
Fig. 1. Lattice parameters of roll nanotube. 

 
The diffraction amplitude in general form: 
 

   (2) 
 

where {R,  *,  z*} – the cylindrical coordinate sys-
tem  in  reciprocal  space  of  an  object,  fj(R*) – the 
electron atomic scattering factor of j-th atom in 

Bravais cell, 
22 ** zRR  – the scalar of radius-

vector  of  a  certain  point  in  reciprocal  space.  From 
(1) and (2) it can be assumed that analytical estima-
tion of lattice sums (over n and ) in general is 
complicated, and calculation of diffraction intensity 
that corresponds to amplitude (2) can be done only 
numerically. 

Let’s consider the structure of the nanotube in 
case of small chiral angle  –  this  approach,  ac-
cording to [1], allows dividing spiral structure into 
turns. Thus, in practically important case then gen-
erator g = 2 d/b [1] is odd (in case of chrysotile 

nanotube) and semi-integer p0 = 2 0/b coordinates 
(1) of j-th atom of v-th primitive unit cell on m-th 
turn (index number of m begins from zero) of n-th 
spiral-helical site line in the first approximation 
represent relatively simple expression: 

 

   
 ,    (3) 
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Let’s neglect parameter zj in (3) and expand radi-
cal into a Taylor series in powers of the smallness 

of   to  the linear  term and neglect  parameter  yj in 
comparison with other terms: 
 

   .   (4) 
 

Substituting (4) into (3) and neglecting relative-
ly small terms gives coordinates of atoms: 
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For this reason diffraction amplitude (2): 
 

, 
 

where N – the length of the nanotube in units of , 
and M – number of layers. Let’s expand the last 
exponentional function into cylindrical waves in 
accordance with equation  
 

)()cos(2)()cosexp(
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0 q
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where   
 

,    (5) 
 

.    (6) 
 

Let’s consider summands of diffraction ampli-
tude (5) and (6) sequentially. When, estimate sum-
mands of q-series that make a strong contribution to 
amplitude of reflexes, and also achieve analytic 
relations governing regions of existence of intensi-
ty’s maxima in reciprocal space. Simulated diffrac-
tion profiles will be calculated in case of electron 
microdiffraction on single nanotube. We also didn’t 
take into account any fudge factors (for absorption, 
etc) on this stage of development.  
 
Reflexes h0  h00 

 
Let’s consider diffraction amplitude (5). Sum 

taken over n has a sharp maximum when  

, ,    (7) 

Such equation governs coordinates of so called 
«layer planes» of reciprocal space of the nanotube. 
Near  or  on  this  layer  planes  stand  maxima  of  dif-
fraction amplitude. When the flattish Ewald’s 
sphere of electron beam in TEM cuts reciprocal 
space of the nanotube, layer planes transform into 
«layer lines» in diffraction pattern. Indexes of these 
lines coincide with the value of index h. 

By using the Bessel function approximation, we 
can simplify our algebraic expression for finding 
maximum condition of sum over : 
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. 

Let’s expand mv into a Taylor series in powers 
of the smallness of its second term: 
 

     m
mm

bb22

,   (8) 
 

Therein is lies the method of linear approxima-
tion for coordinates of atoms that allows us to con-
tinue our  analysis.  As a  result,  the last  sum can be 
cast into: 
      

 
 

 
 

. 
These sums have maxima when 
 

       ,       . 
 

The first term in brackets is approximately equal 
to kpm having relative high value that, even after 
dividing by d, goes far beyond the scope of limits 
of considered region of R coordinate. Therefore, k = 0 
and the amplitude (5) governs strong reflexes [6, 7]. 
The next term corresponds to locations of maxima 
of m-th summands of the diffraction amplitude of 
h00 reflex for monoclinic, and when  = 0 – for an 
orthogonal polytypic modification of nanotube 
structure [1]. 

 

Consequently, the amplitude (5) governs series 
of pseudoorthogonal h0 [6] and h00 reflexes from a 
roll  nanotube  in  case  of  strong  layer.  Arithmetical  
sign  « » provides positive value of R coordinate 
in both sides of reciprocal space of an object, where 
layer planes with h < 0 and h > 0 stand. In the case 
of h > 0 we must choose negative value. With these 
results we can estimate expression for amplitude 
(5): 
      

 
 
where N – value of sum over n, index «S» signify 
that these reflexes are strong. 

Figure 2 shows calculated profiles of the be-
ginning of 2-nd layer line for monoclinic roll nano-
tubes with different chiral angles. Each curve is a 
summation of pseudoorthogonal h0 and monoclinic 
h00 reflexes (when the chiral angle is small reflexes 
merge with each other). The pseudoorthogonality 
effect was analyzed earlier in case of chiral and 
nonchiral  nanotubes  [6,  7].  In  this  case,  as  for  
nonchiral nanotubes, pseudoorthogonal reflexes are 
formed by primary maximum of Bessel functions 
with zero index and thus reflexes are located in R = 
0. Let’s consider the amplitude (6) and related dif-
fraction effects. 

 
Fig. 2. Profiles of the beginning of 2-nd layer line of 
monoclinic roll nanotubes with different chiral angles  
(degrees). The maximum intensity (1,69 1011) is syn-
thetically limited. 
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Reflexes of general position 
 
The amplitude (6) can be cast into such form: 

     
 

 

 

 

.                          (9) 
 

Sums over n have sharp maxima when 
 

    , 
  

.              (10) 
 

By introducing the following notation 
 

     ,   (11) 
 
we reduce the amplitude (9) to 

 

                 .                                    (12) 
 

For estimation of the maximum condition of lat-
tice sums over v, we should use the Bessel function 
approximation:      qx
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. 
 
It allows us to reduce sums over v in expression (12) to: 
 

.            (13) 
 
For further analysis we use linear approximation 

again. Let’s expand mvj into a Taylor series in powers 
of the smallness of 2 (bv + yj) to the linear term: 

   
   m

j

m
mjm

ybyb22

. 
 

And use also the expansion (8). Thus, when 2 m  q, sums (13) may be expressed as follows 
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Consequently, the amplitude (12) can be cast into such form: 
 

 

 

 

 

                       ,            (15) 

where . 
 

Sums over  in the expression (15) have sharp 
maxima when 

 

b
kqRz

mm
c 2 ,     ,...2,1,0k .     (16) 

 
Therefore, the diffraction amplitude consist of 

four summands, each of which contains product of 

sum over n ( mqS  multiplier) by sum over . Maxi-
ma of amplitude could be achieved when conditions 
(10) and (16) are fulfilled simultaneously. These 
conditions generate a set of equations for defining 
z* and q. Results of defining q for four summand of 
the amplitude (15) are noted in fourth column in 
Table 1 in which we neglected a value containing 

2
c  multiplier. 

By substituting q from the fourth column into 
the second, and by neglecting summands of second 
order  of  smallness  (values  of  first  order  of  small-
ness are  and 1/2 m), we can achieve coordinates 
of layer lines 

         
cb

k
a
hz*

            (17) 
 
for  all  four  terms,  where  is  necessary  to  take  into  
account arithmetical signs of k and . From (17) 
we see that in this case, in comparison to diffraction 
by chiral nanotubes, coordinates of layer lines in a 
first approximation are independent of the layer 
number m. 

Let’s consider the fourth column of Table 1. It’s 
obvious that among the three summands contrib-
uting to q largest on modulus value, when k  0, 
has the first summand. Thus, this summand governs 
arithmetical sign of q. By taking into account the 
fact that q  1 by convention, it may be deduced 
that 1-st and 2-nd summands of amplitude (15) gov-
ern reflexes with k > 0, and 3-th and 4-th - with k < 0. In 
consequence of R  0 by convention, the amplitude 
of strong reflexes is governed by 2-nd  3-th sum-
mands when k = 0. Because of symmetry of recipro-
cal space, we will consider only layer lines with h  0. 
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Values of z* and q, at which maxima of amplitude are reached 
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Therefore, our estimation shows that strong re-
flexes of the diffraction pattern from a roll nano-
tube with small chiral angle stand on layer lines (7), 
and  diffuse  reflexes  are  shifted  from  lines  by  the  
value proportional to chiral angle in direction corre-
sponding to its sign and sign of k index. By consid-
ering the fourth column as a rule for choosing terms 
of series over q in the amplitude (12), we will get 
expressions for the amplitude of strong reflexes. 
 
Strong reflexes of zero layer line 
 

From the Table 1 for h = k = 0 we can estimate 
q:q2 = q3 = Rd, and, if it’s remembered that q must 
be integer, we can get an expression: 
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- this expression describes locations of so called 
«basal» reflexes 00l on the layer line with z* =  0.  
Therefore, 00l reflexes are described by primary 
summands of series over q in the expression (12), 
moreover  each reflex is  described by its  own sum-
mand with q = l.  As a  result,  in  case of  inessential  
overlap of Bessel functions the amplitude (12) can 
be written as: 
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where maxima of mlS  equal to N are taken into 
account. Corresponding intensity is independent of 
chiral angle, but has an angular dependence to *. 
Figure 3 shows profiles of 00l reflexes calculated 
from the expression (19). It’s interesting to note, 
that only 001 reflex has small-angle tail. 
 

                        (19) 
 

 
Fig. 3. Strong reflexes of zero layer line from roll nano-
tube for * = 0. 
 
Strong Reflexes Standing on the Layer Lines with 
h > 0 
 

Here from the Table 1 and for k = 0 we can es-
timate: 
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Integrality requirement for q gives: 
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where the index l is governed by the expression 
(18). Thus in this case, as in the preceding subject, 
strong reflexes h0l (except h00 reflexes) are also 
described by primary terms of series over q in the 
expression (12). However, by comparing with simi-
lar expressions for monoclinic polytypic modifica-
tions of circle, chiral and also spiral nanotubes in 
model of elastic layer, it’s easy to see that the vari-
able 2  plays  the  role  of  interlayer  shift  z.  
With the result of 2-nd section of the article, it al-
lows to write an expression for locations of maxima 
of m-th summands of strong reflexes h0l on the 
layer line in traditional way [6]: 
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In  the  same  way  as  in  the  previous  section  of  

sum (11) let’s set:  
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This expression for h = 0 totally identical to (19). 
Thus, expression (21) governs amplitudes of cou-
ples of strong reflections lhlh 00  from roll mon-
oclinic nanotube with small chiral angle in the 
model of strong layer. 

Figure 4 shows profiles of reflexes 20+200 tak-
en from Fig. 2, and profiles of 20l reflexes calculat-
ed for intensity corresponding to the amplitude 
(21), with structural parameters of chrysotile and 
different chiral angles. As expected during the 
analysis, the diffraction profile is a summation of 
pair lhlh 00 reflexes for l > 0 and  = -0,04 . In 
case of the orthogonal polytypic modification of 
roll nanotube (  =  0),  reflexes  from pairs  join  to-
gether and make a summary single reflex, which 
routinely [8] identify as h0l reflex.  

 

 
 

Fig. 4. Strong reflexes on the second layer line from 
chrysotile monoclinic roll nanotube with * = 0 and  = 
-0,04º (solid line), -0,5º (dotted line) and -1º (dashed 
line). 

 
Increasing of chriral angle leads to degradation 

of diffraction conditions (Fig. 4). It must be empha-
sized that such effect isn’t a result of our approxi-
mations. It’s obvious that within the framework of 
assumed model small angle  is a good simulation 
parameter. However, from (3) it follows that in-
creasing of chiral angle will lead to strong change 
in z coordinates of an atoms from one layer to an-
other. This leads to «destruction» of scattering 
planes h0l and, as a result, to deterioration of dif-
fraction conditions. 
 
Diffuse reflexes 
 

Locations of layer lines of diffuse reflexes are 
governed by the expression (17) with regard to al-
gebraic sign of k index. The Amplitude (12) de-
scribes the profile of diffuse reflex hk0. In this am-

plitude selection of terms of series over q should be 
done in accordance with Table 1: q1 and q2 - for k > 0, 
and q3,  q4 - for k < 0. However, selection of terms 
of series that contribute significantly to diffraction 
amplitude must be done in slightly complicated 
way – this way will be discussed below. 

Our findings allow estimating locations of main 
maxima of diffuse reflexes. Let’s use one of the 
well known properties of the Bessel function lies in 
the fact that its main maximum located near the 
value of an argument equal to index of the function. 
For the amplitude (12) and noted in Table 1 q this 
gives: 
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where we neglect relatively small values. By com-
paring expressions (17) and (22), it’s easy to see 
that  for  c >  0  reflex 0hk  lies above the layer line 
with z* = h/a and for smaller values of R, and 0kh  
reflex-under the layer line with biggest R. For c < 0 
reflexes will interchange places. 

For estimation of an angular splitting relatively 
to the center of reciprocal space of such reflexes in 
microdiffraction pattern, we determine the formula 
for scalar vector of main maximum of diffuse reflex 
from (17) and (22) 
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- the splitting is independent on the value of the 
chiral angle. It means that the splitting of diffuse 
reflexes occurs on the arc of a circle with the center 
coinciding with the center of reciprocal space. 
From (17) an (22) also follows that the distance 
between two main maxima of diffuse reflexes hav-
ing opposite signs of k index may be written as 
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Sought value of splitting angle can be estimated 

from (23) and (24) 
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Let’s get expressions describing diffuse reflexes 
in numerical terms. The integrality requirement of q 
and results of previous sections give that each m-th 
summand of amplitude of diffuse reflex is de-
scribed by the group of terms of the series over q in 
the amplitude (12). Each group consists of q-tuple, 
indexes of which are varied sequentially near the 

value mgpk 0 . Limits of this group can be easi-
ly obtained from the last column in the Table 1: 

 
max0max0 lmgpklmgpkq ,  (25) 

 
where lmax – the smallest integer greater than Rd, 
that is used during simulation. Indexes of corre-
sponding Bessel functions in the amplitude (12) are 
also  differ  by  one,  and  for  this  reason,  these  func-
tions are closely adjacent to each other in R scale. 
This means that we can’t neglect their overlap, and 
therefore, we must add diffraction amplitudes rather 
than diffraction intensities. On the other hand, for 
increment of k difference between indexes of two 
adjacent groups correspond to the value 

. In case of such significant distance in  

R scale and inessential overlap of Bessel functions, 
we may consider diffraction amplitudes of diffuse 
reflexes independently of each other. 

Note that  in  this  case q indexes of  terms of  the 
series  that  governs  diffuse  reflexes  are  not  small,  
therefore we can’t neglect second term in round 
brackets  of  sums  (11),  as  we  did  in  case  of  strong  
reflexes. For this reason maximum condition of 
sums gives: 
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where k should be taken modulo. By comparing 
this expression with (17), it may be concluded that 

in case of diffuse reflexes, mqS  sum corresponds to 

reflexes with k > 0 and mqS  - to reflexes with k < 0. 
By taking into account the expression (17), the 

amplitude (12) in case of diffuse reflex with k > 0, 
it can be conceived of as: 

      

,                             (26) 
 

where «D» index means «diffuse» and 
 

. 
 
A similar estimate can be made for diffuse reflex with k < 0: 

 

,              (27) 
where 

 
 

limits of summation over q in expressions (26) and 
(27) are defined by the expression (25).  

Let’s consider peculiarities of the intensity dis-
tribution of diffuse reflexes in cross-section (rela-
tively to the axis of nanotube) of reciprocal space of 
a roll nanotube. For theoretical estimation the Bes-
sel function has to be approximated by cosine. 
Terms and multipliers that contribute a significant 
value to estimation of the amplitude (27) for q  
kpm are then approximately represented by  

m
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a
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Addition of summands in real and imaginary 

part of the amplitude depends on the parameter kgm. 
It’s obvious that for even kg cosinusoidal sum-
mands come only into real part of the amplitude 
and sinusoidal – only into imaginary part. In case of 
uneven kg summands come into real and imaginary 
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part alternately. In that case we should change m to 
2 m and modify the limits of summation. In this 
analysis limit of summation is doesn’t matter, and 
therefore, considering expression can be approxi-
mated by  

 

m
c AmRdkg

a
h 2222cos 0

, 
 
where A consist summands that are independent of 
summation index. 

Sum have maxima when 
 

     
nRdkg

a
h

c 222
0

, 
 
where n – integer. This expression is equation for 
class of right-handed and left-handed Archimedean 
spirals arranged in layer plane (17) in reciprocal 
space. Let’s deduce * from the expression near the 

spiral beginning, where bkR / (Since we wish to 
study points where spirals begin we should consider 
only right-handed spirals): 
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. 
From the first term at the right side of the equa-

tion it follows that the pattern is repeated every 
/kg angle and it turns out that it has 2 kg-fold 

symmetry. It’s easy to see that for even kg in imag-
inary  and  real  parts  of  amplitude  summands  are  
twice as much and this yields that the pattern has a 
kg-fold symmetry. Therefore, the pattern has a 
symmetry  center  in  both  cases.  Note  that  we  can  
use such analytic simplification only for qualitative 
evaluation, but not for exact calculation. 

Obtained results allow us to pass to simulation 
of diffraction profiles of diffuse reflexes along the 
layer line using (26) and (27). For this purpose ac-
cording to (17) it’s necessary to choose z* coordi-
nate of layer line and azimuthal angle *, at which 
the reciprocal space of the nanotube is cut by Ewald 
sphere of electron beam. 

Figure 5 shows simulated distribution of intensi-
ty of 110 diffuse reflex from the roll orthogonal 
chrysotile nanotube in the {R, *} plane with coor-
dinate z* expressed in (17). In accordance with our 
estimation this distribution has a helical fashion that 
is very similar to diffuse reflexes from coaxial 
nanotubes [6, 7]. Distortion of 2 kg-fold symmetry 
(generator g of chrysotile is equal to 5) on the lower 

levels of intensity connected with existence of ends 
points of spiral lattice in { , } plane, angle loca-
tions of which in this simulation are agreed.      

 

 
Fig. 5. Simulated distribution of intensity of 110 diffuse 
reflex from roll chrysotile nanotube in the {R, *} plane. 

 
Figure 6 shows simulated profiles of 110 reflex 

along the layer line (17) for different *, showed at 
Fig.  5  by straight  lines of  the same type.  From the 
picture it follows that the profile of diffuse reflex 
depends on the nanotube orientation relatively to 
electron beam. This peculiarity has a significant 
importance for lattice parameters (b) measuring 
technique that uses microdiffraction pattern from 
single nanotube.  

 

 
Fig. 6. Simulated profiles of 110 diffuse reflex for dif-
ferent * showed at Fig. 5 by straight lines of the same 
type. 

 
The truth is that anyone of several points of the 

beginning of  pair  spiral  reflexes in Fig.  5  could be 
associated with the main maximum of diffuse reflex 
hk0. Its polar radius is about Rhk0  k/b, and here 

» sign means that the point is slightly shifted 
from the k/b value in the direction of large R ac-
cording to average radius of the nanotube [9]. 
However, for random orientation of the nanotube 
relatively to its axis, every point of intersection be-
tween  spiral-reflex  and  Ewald  sphere  could  be  the  
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maximum of diffuse reflex in the microdiffraction 
pattern. This may cause serious errors while meas-
uring lattice parameters. Therefore, it’s necessary to 
rotate nanotube about its axis for finding the point 
where Ewald sphere cuts the beginning of spiral 
pairs (Fig. 5) during the registration of 
microdiffraction pattern from single nanotube. 

 
Conclusion 

 
Presented diffraction theory allows explaining 

the origin of local maxima of intensity in the region 
of «tails» of diffuse reflexes that typically occurs in 
microdiffraction patterns from single nanotube. 
Performed analysis and simulated profiles in Figs. 
5, 6 state that it’s a result of cutting of spiral reflex-
es set, that represents diffuse reflex, by Ewald 
sphere. The maxima indexing problem and the pe-
culiarities of spiral reflexes will be considered in 
next articles of this series. 
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