V.K. Bishimbayev*, A.A. Yerubay

Thermochemical Decomposition of Calcium Sulfate in Presence of Carbon and Hydrogen Mix

> M.Auezov South-Kazakhstan State University Tauke-khan avenue 5, Shymkent, 160012, Kazakhstan

Abstract

Results of research of thermodynamic modeling of thermochemical decomposition of CaSO₄ by a mix of carbon and hydrogen are given in the article. Influence of temperature on degree of carbon interchange by hydrogen on a degree of formation in systems CaO, CaCO₃, CaS was determined. Interchange of C by H₂ reduces formation of CaCO₃, CaS, and formation of CaO has an extreme character. With the help of method of research planning adequate equation of regression has been defined and optimum technological parameters (T = 1660 K and 40 % degree of carbon interchange by H₂), providing full decomposition of CaSO₄ to CaO were determined. The composition of a gas phase of CaSO₄ restoration, containing 16 components was established. By reduction of pressure to 0,001 MPa it is possible to lower temperature of process to 1400 K. The chemical equation of CaSO₄ interaction with carbon and hydrogen was found.

Introduction

At heat treatment of phosphogypsum in presence of natural coals basic restoration $CaSO_4$ up to CaO occurs according to reaction [1]:

$$2CaSO_4 + C = 2CaO + 2SO_2 + CO_2$$
(1)

The structure of flying coals includes hydrogen [2, 3] which also restores CaSO₄:

$$CaSO_4 + H_2 = CaO + SO_2 + H_2O$$
(2)

The purpose of the present research is definition of regularities of restoration $CaSO_4$ by mixtures containing carbon and hydrogen. Research was carried out by a method of thermodynamic modeling employing program complex Astra [4] based on the fundamental principle of entropy maximum [5, 6]. The basis of the information on a database consists of thermodynamic properties of the individual substances systematized at the Institute of high temperatures of the Russian Academy of Sciences and the USA National bureau of standards [7, 8].

Experimental

The research was carried out at temperature interval of 500 - 1800 K at pressure (P) 0,1 MPa. Proceeding from [9] initial quantity of carbon moles in system comprised 1,5. Influence of the degree of carbon moles interchange by hydrogen (γ) on the degree of formation CaO was determined in the work.

In figure 1 the information about influence of γ and temperature on the process, from which it follows, that the basic compounds in systems are CaCO₃, CaSO₄, CaS and CaO. CaCO₃ is formed at low temperatures. So, at T = 500 K the degree of CaCO₃ formation changes as follows:

αCaCO ₃ , %	0	15	50	85	100
γ, %	49,95	42,13	28,64	12,51	0,00

That is, with increase of hydrogen amount in the system the degree of transition of Ca from $CaSO_4$ into $CaCO_3$ ($\alpha CaCO_3$) decreases. This regularity is described by the equation:

$$\alpha CaCO_3 = 50,365 - 0,4744 \cdot \gamma \ (R^2 = 0,9882) \quad (3)$$

^{*}corresponding author. Email: sksu kaz@mail.ru

Fig. 1. Influence of temperature and degree of carbon interchange by hydrogen (γ) on the degree of calcium (α Ca) distribution in system CaSO₄ - C - H₂

CaS, sulfide of calcium, is an intermediate product of CaSO₄ restoration to CaO. The degree of transition of Ca from CaSO₄ into CaS (α CaS) at increase of γ from 0 up to 100 % decreases from 37,9 to 18,5 % obeying the equation:

$$\alpha CaS = 38,082 - 0,1964 \cdot \gamma (R^2 = 0,9882) \quad (4)$$

CaO in systems appears at T > 1100 K. From figure 2 it follows, that dependence of the transition degree of Ca from CaSO₄ into CaO (α CaO) from γ

degree of interchange has an extreme character with a maximum α CaO at $\gamma = 50$ %. For example, at T = 1600 K α CaO changes as follows:

αCaCO, %	0	15	50	85	100
γ, %	89,2	91,5	100	87,9	74,0

Thus the dependence $\alpha CaO = f(\gamma)$ looks like:

$$\alpha CaO = 0,6016 \cdot \gamma - 0,0072 \cdot \gamma^2 + 87189$$

(R² = 0,9475) (5)

1 - $\gamma = 0$ %; 2 - $\gamma = 15$ %; 3 - $\gamma = 50$ %; 4 - $\gamma = 85$ %; 5 - $\gamma = 100$ %

Fig. 2. Influence of temperature and the degree of mole carbon interchange by $H_2(\gamma)$ on the degree formation of CaO in CaSO₄ - C(H₂) system at P = 0,1 MPa.

Research results

To define the optimum parameters of restorating CaSO₄ to CaO in CaSO₄-C-H₂ system we carried out the research using rototable plan of the second order [9]. As independent variables γ and T have been used. Parameters of the plan and the matrix of research planning are given in tables 1 and 2.

 Table 1

 Parameters of the research plan

Level of	The co	ded kind	Natural kind		
variables	X1	X2	γ, %	Т, К	
Bottom	-1	-1	14,5	1544	
Тор	+1	+1	85,5	1756	
Zero	0	0	50	1650	
$Arm + \alpha$	+1,414	+1,414	100	1800	
Arm - α	-1,414	-1,414	0,0	1500	

Using program Mathcad - 14 [10] we have found the equation of regression in $\alpha CaO = f(\gamma, T)$ in the coded type:

$$\alpha \text{CaO}_{(\text{cod})} = 99,2 - 4,3473 \cdot x_1 + 1,68 \cdot x_2 - 7.475 \cdot x_1^2 - 0,675 \cdot x_2^2 - 0,35 \cdot x_1 \cdot x_2 \quad (6)$$

Checking the importance of the coefficient of regression equation by Student's criterion has shown, that all 6 factors of the equation are significant. The equation is an adequate one. Calculated value of Fisher's criterion (5,59) is less than the tabular one (6,59). Thus the coefficient of

determination (R^2) has comprised 0,988 [10]. In natural scale the adequate equation of regression looks like:

$$\alpha \text{CaO}_{(\text{nat})} = -106,888 + 0,62 \cdot \gamma + 0,218 \cdot T - 5,93 \cdot 10^{-3} \cdot \gamma^2 - 6,01 \cdot 10^{-5} \cdot T^2 - 9,3 \cdot 10^{-5} \cdot \gamma \cdot T$$
(7)

Table 2					
The plan	and results	of research			

N₂	The coded type		Natural type		αCaO,	αCaO,
	X1	X2	γ, %	Т, К	% (res).	% (calc).
1.	-1	-1	14,5	1544	92,0	93,30
2.	1	-1	85,5	1544	86,2	85,37
3.	-1	1	14,5	1756	97,3	97,43
4.	1	1	85,5	1756	90,1	88,03
5.	1,414	0	100	1650	76,2	78,10
6.	-1,414	0	0	1650	91,6	90,39
7.	0	1,414	50,0	100	99,0	10,22
8.	0	-1,414	50,0	0	96,0	95,47
9.	0	0	50,0	1650	100	99,20
10.	0	0	50,0	1650	99,3	99,20
11.	0	0	50,0	1650	97,7	99,20
12.	0	0	50,0	1650	99,4	99,20
13.	0	0	50,0	1650	99,6	99,20

Results of calculating α CaO according to the equation (7) are given in table 2. Absolute maximum mistakes are within the limits of 0,2 - 2,06 % and relative ones are in the limits from 0,2 to 2,49 %. The surface α CaO=f (γ , T) is constructed on the basis of the equation (7) - figure 3 and its horizontal sections (figure 4.)

From figure 3 it follows, that the surface is characterized by a maximum. The maximum of $\alpha CaO = 100$ % is in the area of FMN surface (figure 4).

That is, at $\gamma = 26 - 52$ % and T = 1660 - 1750 K. At the minimal temperature (1660 K) for α CaO = 100 % value γ comprises 40 %. For α CaO = 98 % the temperature can be reduced up to 1570 K, and for α CaO = 97 % - 1530 K.

The composition of the gas phase of the system at $\gamma = 40$ % is given in figure 5 from which it follows, that SO₂, H₂S, CO₂, H₂O and CO are the principal components of the gas phase. At T = 1600 K the gas phase, for example, contains 16 substances: 24,02 % CO₂; 54,15 % SO₂; 16,73 % $\begin{array}{l} H_2O; \ 2,27 \ \% \ CO; \ 1,57 \ \% \ S_2; \ 0,42 \ \% \ SO; \ 0,32 \ \% \\ H_2; \ 0,15 \ \% \ H_2S; \ 0,002 \ \% \ S_3; \ 0,0015 \ \% \ S; \ 0,02 \ \% \\ SH; \ 0,028 \ \% \ CaS; \ 0,39^{*}10^{-3} \ H; \ 0,26^{*}10^{-3} \ SO_3; \\ 0,069 \ \% \ S_2O; \ 0,3^{*}10^{-4} \ \% \ SOH^-. \end{array}$

Fig. 3. The form of response surface α CaO of the CaSO₄-C-H₂ system at P=0,1 MPa

Figures on lines - αCaO, % Fig. 4. Horizontal section views of response surface

1 - H₂O; 2 - CO₂; 3 - H₂S; 4 - SO₂; 5 - CO

Fig. 5. Influence of temperature on the content of components in a gas phase of system $CaSO_4$ -C-H₂ at P = 0,1 MPa and 40 % of carbon interchange by hydrogen.

If to reduce the pressure to 0,001 MPa, then it is possible to lower temperature of full (100 %) transition of Ca from CaS O_4 into CaO to 1400 K, that is by 260 degrees. Thus interaction will be described by the following chemical equation:

$$4CaSO_{4} + 1,5C + 1,5H_{2} = 4CaO_{2} + 3,707 SO_{2} + 0,128 S_{2} + 0,026 SO_{2} + 0,004 H_{2}S_{2} + 0,0013 S_{2}O_{2} + 1,354CO_{2} + 0,146CO_{2} + 1,424H_{2}O_{2} + 0,07H_{2}$$
(8)

Conclusions

On the basis of conducted research on interaction in $CaSO_4$ -C-H₂ system it is possible to draw the following conclusions:

- the degree of formation of intermediate products (CaCO₃ and CaS) decreases in process of carbon interchange in system by hydrogen;

- the degree of CaO formation depending on temperature and degree of carbon interchange by hydrogen has an extreme character;

- a maximum of CaO formation (≈ 100 %) can be achieved at T=1660 K and $\gamma = 40$ %;

- by reducing pressure from 0,1 to 0,001 MPa the temperature of full decomposition of $CaSO_4$ to CaO dicreases to 1400 K.

References

- 1. G.B. Sinyarev, N.A. Vatolin and others. Application of the COMPUTER for thermodynamic calculations of metallurgical processes. Moscow: Nauka, 1982, p.263
- 2. J. V. Gibbs. Thermodynamic works. Transl. from eng, under ed. V.K. Semenchenko. Mosccow: GTTI, 1970, p.492
- G.B. Sinyarev, L.E. Slyn'ko, B.G. Cowards. Principle and methods of definition of parameters of an equilibrium condition // MHTU Works, 1978, № 268. p. 4-21.
- L.E. Slyn'ko, B.G. Cowards. Description of algorithm and the program of thermodynamic calculation. // MHTU Works, 1978, № 268. p. 21-54.
- 5. JANAF Thermochemical tables, 2nd edition. NSROS-NBS US Gov Printing Office, Washington, DC, 1971, p.1141
- Thermodynamic properties of individual substances. A reference book by L.V. Gurvich, I.V. Vejts in 4 volumes others. Moscow, Nauka, 1982, p.559
- 7. E.YA. Kalashnikov. Development of technology of reception of calcium carbide

Eurasian ChemTech Journal 12 (2010) 139-143

from phosphogypsum. The dissertation on nominating a scientific degree of Cand.tech.sci.. Shymkent, 2010, p.172

- 8. S.A. Ahnazarov, B.V. Kafarov. Method of optimization of experiment in the chemical industry. Moscow: Higher School, 1978, p. 319
- 9. V.F. Ochkov, Mathcad 14 for students and engineers. St.-Petersburg.: BHV-Petersburg, 2007, p.368

Received 1 October 2009.