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Abstract
The photo-electrical behavior of n-Si/orange dye/conductive glass and p-Si/orange dye/conductive glass

sandwich type cells were investigated. In these cells crystal silicon of n-type and p-type and conductive
glass (CG) electrodes were employed and the aqueous solution of organic dye (OD) was used as an electro-
lyte in the distilled water. Under filament lamp illumination, photo-induced open-circuit voltage and short-
circuit current exponentially dropped with time for the n-Si/orange dye/CG cell. In the p-Si/orange dye/CG
cell, the photovoltaic effect was not observed. The n-Si/OD/CG cell showed high photo-electrical response
under illumination. In the light-voltage/current conversion, these cells behaved as a differentiator and exhib-
ited charge-storage properties.

Introduction

More recently, characterization of organic semi-
conductors and studies of the photo-electric and
photo-electrochemical cells based on organic semi-
conductors have attracted considerable interest [1-
16]. This is mainly due to low cost, ease of devices
fabrication and interesting electrical and optical prop-
erties. Also organic semiconductors are highly prom-
ising materials for future cost effective electronic and
optoelectronic devices such as light-emitting diodes,
lasers, photodetectors, field-effect transistors and
integrated circuits [17 and references therein]. Indi-
vidual semiconducting molecules or molecular com-
plexes are of interest for the fabrication of electronic
devices on the molecular scale [18].

Alternative materials and methods of fabrication
for all kinds of devices are constantly sought. Or-
ganic cells may be fabricated with organic dyes, low
molecular weight semiconductors, semiconducting
polymers, or on some combination of these materi-
als. Fabrication and investigation of organic photo-
electric devices is very promising field due to their

high sensitivity in the wide spectral range of wave-
lengths. The combination of organic and inorganic
semiconducting materials provides an alternative for
the production of low-cost and high efficiency pho-
tovoltaic devices. We reported organic-on-inorganic
Ag/n-GaAs/p-CuPc/Ag photoelectric sensor that was
sensitive in UV-visible-IR spectral range (200-1000
nm) [19]. The present paper is one of a series on the
characterization of OD and its use as an organic semi-
conductor which have to date concerned with the in-
vestigations of electrical properties of the OD films
deposited from aqueous solution at high gravity con-
ditions [20] and a two-layer structure, poly-N-epoxi-
propylcarbazole/OD heterojunction, that has shown
a rectification behavior [21]. This paper presents the
results of investigation of photo-electric properties
of n-Si/orange dye/conductive glass and p-Si/orange
dye/conductive glass photoelectrochemical cells. The
study of these cells may represent an interesting al-
ternative for all-inorganic and all-organic photovol-
taic devices [22]. These cells not only convert solar
energy to electrical but also has the ability to store
energy [23]. Studies of the properties of organic semi-
conductors have been exploited in producing diodes,
field effect transistors and electroluminescent devices
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of these materials [24]. Therefore, the investigations
carried out in this work may be utilized for the pro-
duction of organic electronic devices.

Experimental

Commercially produced organic semiconductor
orange dye (OD), C17H17N5O2 (Fig. 1) with molecu-
lar weight of 323 g/mole and density of 0.9 g/cm3

was used for the fabrication of photo-electrical cell.
In the cell, the crystal silicon electrodes of n- and p-
type with concentration of dopants of 1022 m-3 and
conductive glass (In2O3) were used. The 5 wt.% aque-
ous solution of the OD was used as an electrolyte in
distilled water. Figure 2 shows schematic diagram
of the fabricated sandwich type n-Si (or p-Si)/OD/
CG cell. The n-Si and p-Si electrodes dimensions
were equal to 4×5×0.5 mm. The separation between
the n-Si (or p-Si) electrode and conductive glass layer
was equal to 1 mm. The terminal contacts to n-Si
and p-Si were made by metallic clips that had no
connections with the solution.

For the investigation of photo-electric properties
of the cell the conventional digital volt-ampere-
meters, an oscilloscope, an intensity-meter and a lux-
meter were used. All experiments were carried out
at room temperature conditions. Filament lamp was
used as a light source.

Results and Discussion

The semiconductor-electrolyte interface at equi-
librium is described in [25,26]. When semiconduc-
tor is immersed in redox electrolyte the Fermi level
EF of semiconductor equilibrates with the Fermi level
in electrolyte EF,redox that is related with redox poten-
tial Eredox of the electrolyte by the following expres-
sion [26]:

EF,redox = -4.5 eV – q⋅Eredox

where q is electronic charge. The Eredox is defined
with reference to standard hydrogen electrode (SHE).

In order to identify the electronic energy levels at
the interface between the semiconductor and the elec-
trolyte, we investigated visible absorption spectrum
of orange dye aqueous solution (Fig. 3). It is seen
that absorption starts in the wavelength range 550-
850 nm and covers 350-550 nm as well. This absorpti-
on is equivalent to the charges excitation in the energy
band of 1.5-2.3 eV and 2.3-3.5 eV, respectively.
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Fig. 1. Molecular structure of orange dye (OD).
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Fig. 2. Cross-sectional view of the n-Si (or p-Si)/OD/CG cells:
1 – cell's body, 2 – n-Si (or p-Si), 3 – aqueous solution of oran-
ge dye, 4 – conductive glass, 5 – glass, 6 and 7 – terminals.
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Fig. 3. Absorption vs. wavelength for an orange dye aque-
ous solution.
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Figures 4a and 4b show energy levels in semi-
conductor-electrolyte interface for the n-Si/OD/CG
and p-Si/OD/CG cells respectively. Here, Vse and Vce

are potential barriers between the n-Si semiconduc-
tor-electrolyte and conductive glass-electrolyte in-
terfaces, respectively. Here, we assume that the Vse

value may be large and approximately comparable
with Si band gap (1.1 eV). For the case of p-Si semi-
conductor-electrolyte, the Vse may be negligible be-
cause the orange dye is also a p-type organic
semiconductor [20,21]. The excitation energy levels
in OD solution are the larger ones of the energy gap
of the Si. Therefore, we can assume that on illumi-
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nation of the cells at energies lower than 1.5 eV and
above 1.1 eV photons of incident light are transmit-
ted through OD solution and absorbed by n-Si (or p-
Si). Photons with the larger energy of 1.5 eV are
absorbed by OD solution. Photo-induced charges in
n-Si may contribute to the cell's photocurrent. On
the other hand it may be visible contribution of or-
ange dye solution in photoelectric effect as in dye-
sensitized cells [25]: n-Si semiconductor can receive
electrons from the photo-excited dye as well. In the
case of p-Si/OD/CG cell photo-induced charges may
be not separated because of negligible built-in of elec-
tric field in the semiconductor surface.

where t1 = 6 s , t2 = 12 s (Fig. 6 ).
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Fig. 4. Energy levels in semiconductor-electrolyte inter-
face for the n-Si/orange dye/CG cell (a) and p-Si/orange
dye/CG cell (b).
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Figures 5 and 6 show the open-circuit voltage-
time and short-circuit current-time relationships re-
spectively for the n-Si/OD/CG and p-Si/OD/CG cells
at illumination of 15000 Lx. It is seen that in the p-
Si/OD/CG cell photovoltaic effect is not observed
really. In the n-Si/OD/CG cell, photo-induced open-
circuit voltage and short-circuit current decay expo-
nentially with time constants of the processes being
equal to 40 s and 4 s, respectively. On the other hand,
the storage of electric energy takes place and its effi-
ciency is equal to 98% for the current-time wave-
forms. It was found as a Qon/Qoff ratio of charges
stored at illumination "on" and supplied at illumina-
tion "off":
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Fig. 5. The open-circuit voltage and time relationship for
the n-Si/OD/CG (1) and p-Si/OD/CG (2) cells.
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Fig. 6. The short-circuit current and time relationship for
the n-Si/OD/CG (1) and p-Si/OD/CG (2) cells.

The photo-voltage/current decay with time when
the illumination is "on". It may be due to electric
charge of the capacitance comprised by n-Si elec-
trode - OD solution - conductive glass electrode sys-
tem. When the illumination is off, the capacitance is
discharged providing voltage and current of opposi-
te polarity (Figs. 5 and 6). Actually the open-circuit
voltage and short-circuit current waveforms (Figs. 5
and 6) show that the cell performs like the diffe-
rentiator circuit and properties of this cell are like to
transient processes in conventional RC-circuit. Tak-
ing into account the results presented in Figures 2-6,
it is possible to develop the equivalent circuit of the
photoelectric sensor [19]. The modified equivalent
circuit that reflects the properties of the n-Si/OD/
CG cell is shown in Fig. 7. Conventional elements
of the photoelectric cell equivalent circuit [27] as a
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current source (IPH), diode (D), shunt resistance (Rsh1)
and series resistance (Rs) are concerned to n-Si semi-
conductor. The C and Rlkg represent the inter-elec-
trode (n-Si-OD solution-CG) effective capacitance
and leakage resistance of the C, respectively. The
Rsh2 is a total inter-electrode resistance of the elec-
trolyte. The two resistances Rlkg and Rsh2 are rather
non-linear, like varistors, because of electric field
dependence of the ionic conduction [28].

where J is intensity of irradiation (30 mW/cm2), S is
area of n-Si electrode (20 mm2) and T is time of illu-
mination (T = 6 s, Fig. 6), respectively. Finally from
eq. 4, it was determined the efficiency, that is equal
to 1×10-4%. As the value of the η is small, the n-Si/
OD/CG cell may be interesting, first of all, as a pho-
toelectric sensor that has signal storage behavior as
well, rather than solar cell.

Assuming that depletion layer is formed in n-Si
semiconductor electrode surface and the potential
barrier Vse is comparable with gap in electronic states
of Si semiconductor (Eg = 1.1 eV), the width (d) of
the depletion layer may be determined from the fol-
lowing expression [29]:

VSN = qND⋅d2/2µµo

where q is electronic charge, ND is concentration of
donors, ε = 12 is dielectric constant of Si and εo is
permittivity of free space. Using the eq. 7, the value
of d was determined being equal to 360 nm. This
value is in the range of nominal dimensions (10-1000
nm) of the depletion region's width [29].

Conclusions

The n-Si/OD/CG and p-Si/OD/CG cells were fab-
ricated with the aqueous solution of the orange dye
(OD) as electrolyte and its properties were investigat-
ed. Under filament lamp illumination, photo-induced
open-circuit voltage and short-circuit current incre-
ased with illumination and exponentially dropped
with a time. At light-voltage/current conversion the
cell performs as a differentiator. It has been found
that the n-Si/OD/CG cell shows charge-storage be-
havior when the illumination is off. The charge-stor-
age efficiency was equal to 98% for the current-time
wave-forms. The width of the depletion layer was
estimated as 360 nm in the n-Si semiconductor sur-
face. The energy conversion efficiency of the cell
was equal to 1×10-4%. In p-Si/OD/CG cell the photo-
voltaic effect was not observed. In this case the photo-
induced charges in p-Si may be not separated rather
because of negligible built-in electric field in the
semiconductor surface.
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Fig. 7. Equivalent circuit of the n-Si/OD/CG cell: IPH –
photo-current source, RS – series resistance, Rsh1 and Rsh2 –
shunt resistances, C – effective capacitance, Rlkg – leakage
resistance, D – represents electrode-electrolyte junction.
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It is known [26] that on electrolyte side of electro-
de-electrolyte interface there is double layer (Helm-
holtz layer) of negative and positive ions. The width
of this layer is equal 0.4-0.6 nm. The Helmholtz layer
is characterized by the Helmholtz capacitance CH.
The effective capacitance C (Fig. 7) incorporates the
CH and CE (electrolyte capacitance) connected in se-
ries. The effective capacitance C may be determined
from experimental data obtained above using con-
ventional relationship:

∫== UidtUQC //

where Q is charge and U is voltage across capacitor
and T = 6 s. The U and charge ∫= idtq  we can ob-
tain from Fig. 5 and Fig. 6, respectively, and deter-
mine the value of C that is equal to 3.4 µF. From the
following expression for the energy (Wc) of charged
capacitance:

Wc = CU2/2
and we can also calculate the power conversion effi-
ciency (η) which is given by:

%100×=
lW
cW

η

where Wl is energy of light.

Wl = J⋅S⋅T

(3)

(4)

(5)

(6)

(7)
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