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Abstract

A module of PrIMe automated data-centric infrastructure, Bound-to-Bound Data 
Collaboration (B2BDC), was used for the analysis of systematic uncertainty and data 
consistency of the H2/CO reaction model (73/17). In order to achieve this purpose, 
a dataset of 167 experimental targets (ignition delay time and laminar flame speed) 
and 55 active model parameters (pre-exponent factors in the Arrhenius form of the 
reaction rate coefficients) was constructed. Consistency analysis of experimental 
data from the composed dataset revealed disagreement between models and data. 
Two consistency measures were applied to identify the quality of experimental 
targets (Quantities of Interest, QoI): scalar consistency measure, which quantifies the 
tightening index of the constraints while still ensuring the existence of a set of the 
model parameter values whose associated modeling output predicts the experimental 
QoIs within the uncertainty bounds; and a newly-developed method of computing the 
vector consistency measure (VCM), which determines the minimal bound changes 
for QoIs initially identified as inconsistent, each bound by its own extent, while 
still ensuring the existence of a set of the model parameter values whose associated 
modeling output predicts the experimental QoIs within the uncertainty bounds. The 
consistency analysis suggested that elimination of 45 experimental targets, 8 of which 
were self- inconsistent, would lead to a consistent dataset. After that the feasible 
parameter set was constructed through decrease uncertainty parameters for several 
reaction rate coefficients. This dataset was subjected for the B2BDC framework 
model optimization and analysis on. Forth methods of parameter optimization were 
applied, including those unique in the B2BDC framework. The optimized models 
showed improved agreement with experimental values, as compared to the initially-
assembled model. Moreover, predictions for experiments not included in the initial 
dataset were investigated. The results demonstrate benefits of applying the B2BDC 
methodology for development of predictive kinetic models.

1. Introduction

To firmly develop predictive chemical reaction 
models for complex chemical systems, alliance of 
excessive amounts of theoretical, computational, 
and experimental data collected by plentiful num-
ber of scientists and researchers is required. The 
integration involves evaluation of the data con-
sistency, validation of models, and uncertainties 
quantification for model predictions. This approach 
to the development of mechanistic reaction mod-
els includes assuming the reaction mechanism and 
comparing the outcome predictions of the generat-
ed model to available experimental observations. 
Mostly, such comparisons lead to mixed outcomes: 
some demonstrate a fairly close agreement where-

as some others do not. In the latter case, the possi-
ble inconsistency acquired between the experiment 
and the model is contended to indicate either that 
the model is inadequate or that the experiment (or, 
rather, its interpretation) is incorrect.

Bound-to-Bound Data Collaboration, hereafter 
abbreviated as B2BDC, is an optimization-based 
framework for integrating reaction models with ex-
perimental data from numerous sources to research 
and analyze their collective information content. 
The methodology analyzes consistency among ex-
perimental data and reaction models, searches and 
examines sources of inconsistency, distinguishes 
differing models, predicts model output interval, 
and analyzes the sensitivity of uncertainty propa-
gation [1–8].
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The common settings are as follows. A physical 
process is considered that can be represented by a 
computational model, M(x), with parametric depen-
dence on unknown/uncertain physical parameters, 
x. We assume a prior knowledge (assumptions) on 
the parameters domain, so constraining each x to 
an interval [xmin, xmax] and jointly to a hypercube 
xϵH. At the same time, a collection of experimen-
tal observations, hereafter referred as Quantities 
of Interest (QoI), with corresponding uncertainty 
boundaries, assessed as lower and upper bounds on 
each QoI values, i.e., Le and Ue for each e-th QoI. 
The numerical models must give results that are 
consistent with the QoI bounds in the experimen-
tal reports. Thus additional constraints that the true 
parameters must satisfy are

	 Le ≤ M(x) ≤ Ue		 for all e.                  (1)  

The subset of H appeasing (1) is called the 
feasible set, Ф, of parameters. Ф is barely all pa-
rameter values that all together satisfy the prior 
knowledge and are consistent with all prediction 
models and factual observed results. A parameter 
value that is not in Ф is at odds with at least one of 
these constraints. The mathematical methodology 
B2BDC appeals to constrained optimization over 
the feasible set Ф,

 )x(fmin
Fx∈

where f is a function of interest, and the calculat-
ed min and max establish the “to-bound” aspect of 
the nomenclature. Simply saying, the bounds that 
describe the prior knowledge and the bounds on 
QoIs are mapped into bounds on prediction. Some 
general examples are described below.

1.1. Dataset consistency 

The feasible set represents the complete col-
laborative knowledge incorporated in a dataset, 
and questions in the B2BDC approach are posed 
as problems of optimization over the feasible set. 
This subsequently leads to the question of dataset 
consistency. In order to numerically assess a data-
set consistency, a consistency measure was intro-
duced8 that is able to answer the question on the 
largest possible percentage of uncertainty lessen-
ing to achieve a feasible parameter vector. Cor-
related with a given dataset D, it is notated CD and 
formulated as an optimization problem,

Fx,y
D ,maxC

∈
= γ

In this definition, the original constraints Le ≤ 
Me(x) ≤ Ue are augmented with a scalar coefficient 
γ, where positive values of γ entail the constraint 
tightening , and negative γ values entail the con-
straint loosening. The consistency measure quan-
tifies the tightening index of the constraints albeit 
ensuring the existence of a set of parameter values 
whose corresponding model predictions describes 
the experimental QoIs within the bounds. The 
dataset is considered consistent in case of the non-
negative consistency measure, and is inconsistent 
elseways.

To continue with the analysis, we employed a 
newly-developed method of computing the vec-
tor consistency measure (VCM), similar to Eq. 2, 
but with original constraints augmented with indi-
vidual relaxations γe for each bound10. The VCM 
method determines the minimal bound changes, 
each bound by its own extent, that result in dataset 
consistency.

1.2. Model prediction 

Suppose physical parameters (set of conditions) 
not exercised experimentally but with a property 
P predicted by model MP. One of the main ques-
tions of scientific analysis is on the range of values 
this model exhibits over the domain of feasible pa-
rameter values. Strictly speaking, the question of 
what is the prediction interval for property P that is 
consistent with all of the model/observation pairs 
in the dataset? This is here assigned as model pre-
diction.

In the B2BDC computation, this question is 
expressed into two optimization problems for the 
lower and upper interval endpoints, LP and UP,

 )x(Mmin:L p
Fx

P
∈

=

The length UP − LP measures the uncertainty 
amount in MP’s value with a condition that the true 
parameter vector is a part of the feasible set Ф.

The suggested analysis propose a sequential 
procedure with step-by-step outliers identification 
and sources inspection. A specific direction deter-
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mined for improving dataset consistency and an 
estimate of the extent of possible improvement are 
provided by the analysis. In general, this compu-
tational method offers a tool for estimating exper-
imental observations as well as for model building 
and improvement.

In the current work, Data Collaboration module 
of PrIme1 was applied to the H2/CO sub-system of 
the reaction kinetic model [9] to:

1) investigate the computational algorithms, 
modules and user interface incorporated in PrIMe;

2) investigate an algorithm of the consistent 
dataset construction;

3) test the different chemical kinetic model op-
timization strategies.

2. PrIMe DataSet

2.1. Reaction Model

The H2/CO sub-model (6 elements, 17 species, 
73 reactions) of C1‒C2 reaction mechanism [9] 
with improvements performed on the data followed 
from the studies [11‒21] was used to perform sys-
tematic uncertainty and consistency analyses with 
the Data Collaboration module of PrIMe to obtain 
the feasible set sampling for the base H2/CO chem-
istry of DLR reaction data base. The review of the 
reaction rate coefficients in the analyzed sub-mod-
el was performed with additional focus on the pres-
sure depending and multichannel reactions.

The uncertainty factors for rate coefficients 
were assumed equal to the proposed ones in the 
sources or evaluated from statistical treatment of 
the different data:

.
)T(k
)T(k

)T(f upper
u

0

=

where k0 is the nominal rate coefficient, klow and 
kupper are lower and upper bounds.

The active parameters were identified via sen-
sitivity analysis accomplished with uncertainties, 
represented by the lower and upper bounds. They 
were assumed equal to those proposed in literature 
sources or evaluated from a statistical treatment of 
the literature data.

2.2. Ignition delay time QoI

Before the adjustment of the kinetic parame-

ters can be performed in order to meet the igni-
tion targets it is ultimately required to quantify the 
uncertainties within the shock tube. In case that it 
is not possible to describe some active phenomena 
during the experiments within the shock tube under 
the assumption of homogeneous conditions (con-
stant V, U system) after the reflection of the shock, 
these are classified as “non-idealities” during the 
experiments in the shock tube [22‒31]. Both, set-
up-dependent effects and phenomena due to ener-
gy release can raise the non-idealities and affect 
the instrument readings, contributing to the un-
certainty of experimental results. Considering the 
syngas mixtures, the two states of ignition should 
be identified. The first one is the weak ignition: the 
non-uniform and distributed ignition. The second 
one is the strong ignition: it is induced by auto ig-
nition at the end wall of the tube and propagates 
throughout the mixture [27]. Despite the fact that 
the non-idealities existing in shock tubes have been 
well discussed [22‒31], the quantitative consider-
ation of their impact on the presented data of the 
ignition delay occurs to be a critical issue. For the 
evaluation of the uncertainty bounds of the mea-
surements included in the dataset, the empirical 
algorithm is proposed. Therefore, the most strong 
non-ideality phenomena [22–31] were identified 
throughout the investigations. Also the factors 
related to facility and fuel, which influence these 
phenomena, have been determined.

It was observed that data collected during ex-
periments with large diameter shock tubes (~ 100 
mm), dilute fuel/oxidizer mixtures in monoatomic 
gases, and short test times (less than about 500 μs) 
show the lowest uncertainty level. A correlation of 
the diameter of the shock-tube and weak ignition 
is found: the bigger diameter leads to an ignition 
delay similar to that of a homogeneous reactor.

In the best case (diluted mixture, strong ignition, 
shock tube diameter > 100 mm, τmean = 50 ms – 500 
ms, length of driven section > 8 m) the assumption 
was made, that the uncertainty is at ~15%. Condi-
tions, deviating from upper mentioned, are evalu-
ated by adding a 5% uncertainty for each criterion 
not matching the ideal case. For measured ignition 
delay time longer than one millisecond 5% uncer-
tainty is added for each millisecond. Radical im-
purities were evaluated as extra 5% uncertainty to 
the ideal case.

We selected 122 ignition delay targets with ob-
tained uncertainty evaluation from the shock tube 
experiments [32‒39] for the dataset.

 
,
)T(k
)T(k)T(f

low
l

0= (4)



Uncertainty Quantification in Chemical Modeling

Eurasian Chemico-Technological Journal 20 (2018) 33-43

36

2.3. Laminar flame velocity QoI

Flame velocity observations of syngas mixtures 
at 0.1‒0.5 MPa have been analyzed with the help 
of various techniques known up-to-day [40‒41]. 
There is a scarcity of data on flame speed data at 
high pressures. The uncertainty of flame speed 
measurements are assumed by the experimentalists 
to be in a range between 5–10%. It has to be not-
ed that uncertainty increases with pressure (>0.5 
MPa) and fuel-air ratio (φ>2) [40‒41].

Uncertainty bounds of experimental data were 
evaluated from studies [40‒41] and analysis of the 
current syngas atmospheric laminar flame speed 
data distribution, which can be found in [41]. From 
the data analysis following from [37‒44] the un-
certainty of available data can be assumed to be 
10% for φ<2, 15% for 2<φ<3, and 20% for φ>3. At 
higher pressures, the uncertainties for experimen-
tal data have been estimated by adding 5%.

The 45 laminar flame speed data included in the 
dataset are taken from studies [19, 36, 40, 42‒50]. 
They are selected in order to cover a wide range of 
operating conditions accessible from the literature 
sources.

A preferred key (or PrIMe ID) was determined 
for each structural element in the chemical reac-
tion model and each experimental target. In this 
way, each structural element has a “pointer” to the 
referenced information and/or file. All the exper-
imental and model data were documented in the 
PrIMe Data Warehouse [1]. Selected for analysis 
experimental QoI are described in the data Attri-
bute files of the PrIMe data collection [1]. These 
QoI together with the corresponding model Me(x) 
and the experimental and parameter bounds form 
a dataset. The complete model and experimental 
data are available in the PrIMe Data Warehouse 
[1].

3. General Results

The ignition delay time and laminar flame speed 
data was modeled with numerical tools of PrIMe 
[1], numerical packages CHEMKIN II [51] and 
Chemical Workbench [52]. The ignition delay time 
was computationally defined by the peak in the OH 
or OH* concentration, temperature, or pressure. 
It is pointed in the attribute files of PrIMe Ware-
house. The thermal diffusion model was applied 
for calculation of one-dimensional freely propa-
gating laminar premixed flame using CHEMKIN 
II with over 1000 grid points for each condition.

3.1. Dataset Consistency (Data Quality)

We began the analysis by employing Eq. 2 with 
the initial dataset, which included all 167 QoI (122 
ignition delays and 45 laminar flame speeds) and 
55 active parameters. The results indicated a mas-
sive inconsistency. Eight QoI, those listed in Table, 
were found to be self-inconsistent. These were the 
ignition delay times that were not able to be repro-
duced within their respective uncertainty bounds 
by the model employing rate coefficients within 
their respective uncertainty bounds, H. These eight 
self-inconsistent QoI were removed from the ini-
tially constructed dataset. The latter, however, still 
remained an inconsistent dataset.

Table 
The 8 Self-inconsistent QoI

T5 (K) p5 (atm) ϕ Target 
PrIMe ID

Estimated 
uncertain-

ty (%)

Ref.

1263 1.1 0.5 a00000309 30 [32]
1695 1.6 0.5 a00000352 30 [36]
2004 1.6 0.5 a00000355 25 [36]
1975 1.6 0.5 a00000358 25 [36]
1436 1.6 0.5 a00000359 25 [36]
1027 1.6 0.5 a00000360 35 [36]
1883 1.6 0.5 a00000503 30 [38]
1008 1.6 0.5 a00000504 50 [38]

To continue with the analysis, we employed a 
newly-developed method of computing the vector 
consistency measure (VCM), similar to Eq. 2, but 
with original constraints augmented with individ-
ual relaxations γe for each bound [10]. The VCM 
method determines the minimal bound changes, 
each bound by its own extent, that result in data-
set consistency. Its application identified such a 
dataset-consistency point by changing 30 ignition 
delay times and 7 laminar flame speeds, shown in 
Figs. 1 and 2, respectively. We emphasize that the 
VCM-identified feasible parameter set is a single 
point in H. As this point possesses some optimal at-
tributes, we compare the model predictions obtained 
with this set of parameters, DLR-SynG 1 dataset, to 
the optimization results.

To proceed with further features of the B2BDC 
framework, we created a new dataset by removing 
the 37 QoI identified by VCM, thus forming the 
DLR-SynG 2 dataset contacting 122 QoI. This latter 
dataset is consistent, meaning that all its 122 QoI 
are consistent with each other and with the 55 active 
parameters.
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Fig. 1. Bound Changes of the Ignition QoI Suggested by VCM, DLR-SynG 1 dataset.

 

Fig. 2. Bound Changes of the Laminar-flame-speed QoI Suggested by VCM, DLR-SynG 1 dataset.

3.2. Feasible set construction

While H designates prior information, feasi-
ble set Ф summarizes posterior information: all 
parameter value combinations that satisfy their 

own bounds and also the QoI bounds. The size and 
shape of Ф compared to those of H represent infor-
mation gained as a result of the B2BDC analysis.

Projection of Ф on each of the x’s yields the 
posterior range of the parameter uncertainty [3]. 

 
Fig. 3. Active Parameters with Decrease in Uncertainty Ranges at feasible set construction.
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Those that changed are reported in Fig. 3. For the 
rest of the parameters, the posterior ranges were 
the same as the prior ones, indicating that the ex-
perimental data included in the present analysis did 
not aid in narrowing down the uncertainty ranges 
of these parameters individually. However, such 
an outcome does not necessarily imply no infor-
mation gain for a given parameter: while the ex-
treme parameter values (bounds) may not change, 
the feasible set may, and usually does, eliminates 
some combinations of these parameters with oth-
ers, which is addressed next.

4. Parameter optimization

While the primary focus of the B2BDC frame-
work is on prediction over the feasible set, it also 
supports parameter optimization [53]. Four sets 
of optimized model parameters were investigat-
ed and inter-compared in the present study. The 
first approach is LS-H, a (weighted) least-squared 
fit constraining parameter values to their initial-
ly assessed uncertainty ranges, H. This is now a 
common approach [6, 8, 53]. B2BDC supports two 
more refined methods of optimization [53], LS-F 
and 1N-F, where the objective is minimized with 
x’s being constrained to the feasible set Ф. The 
three problems are easily expressed as mathemat-
ical optimizations. The LS methods minimize the 
familiar sum of weighted least-squared deviations 
between the surrogate model prediction and the re-
ported measured value, ye. The difference lies in 
where the search takes place: LS-H considers all of 
H while LS-F restricts the search to F,

 2]y)x(M[wmin:HLS eeee
Hx

−Σ−
∈

By contrast, the 1N-F problem treats the nomi-
nal parameter vector, the starting set of parameter 
values (x0 = 0), as “preferred”. As we have shown 
in previsions sections, this parameter set lies out-
side the feasible region Ф. The goal of the 1N-F 
method is to find with least number of changes to 
x0 a parameter vector that is feasible. Mathemati-
cally, the one-norm is a well-known approximation 
to enforce such sparsity, i.e.,

101 ||xx||min:FN
Fx

−−
∈

The LS-F and 1N-F optimizations were per-
formed with the final dataset, as the two methods 
are designed to work with an existing feasible set. 
Inspection of the results highlights several features. 
All optimization methods result in parameter sets 
that produce a better agreement with experiment 
than the original set, composed of literature recom-
mendations. The LS-H optimization, constrained 
only to the prior uncertainty ranges of parameters, 
results in the lowest average deviation, as expected, 
but at the expense of violating uncertainty bounds 
of 13 experimental QoI.

The average deviation produced by LS-F is 
larger but not significantly than that of LS-H. The 
1N-F method gives a larger average deviation, yet 
it changes the least number of variables. The LS-F 
and 1N-F optimization methods, with additional 
constraints to the QoI uncertainties, do not violate 
any of the QoI bounds by design unlike to the LS-
H. That demonstrates the main difference between 
two approaches: LS-H optimization can be identi-
fied rater as a fitting.

Some of the individual comparisons are shown 
in Figs. 4‒6, with the inclusion of the most recent 
literature model [54]. Experimental targets of the 
DLR-SynG dataset in these figures are designated 
by a star, the 8 self- inconsistent QoI (excluded from 
the dataset, Table) are colored red and those ex-
cluded with VCM (Figs. 1 and 2) are colored green.

The visual observation is that all the optimized 
models seem to perform with about the same over-
all quality: some models do better for one set of 
conditions, while other are closer to other exper-
imental data. The shock-tube ignition delay times 
show a larger variation between different models. 
The problem here could lie with the incomplete in-
strumental model used in the simulation of ignition 
phenomena, as it does not capture the “non-ideali-
ties” of shock-tube experiments with sufficient de-
tail, or the development of a mild-ignition regime, 
which is not entirely driven by chemistry. These 
factors are especially under suspicion in the incon-
sistent ignition-delay targets. Generally, the lami-
nar flame speeds are predicted better by all models, 
with all simulations falling within the uncertainties 
bounds of experimental observations, reflecting 
perhaps the higher experimental accuracy of the 
measurements.

Figures 4‒6 demonstrate the benefits of opti-
mization methods LS-F and 1N-F and generally 
of the B2BDC methodology in comparison to the 
“conventional” optimization, LS-H, or performed 
in study [54].

 2]y)x(M[wmin:FLS eeee
Fx

−Σ−
∈
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Fig. 4. Ignition delay times: symbols, experimental data [32, 35]; initial model, black line; Varga et al. [54] model, gray 
line; LS-H, red dotted line; VCM, red dash-dotted line; LS-F, blue dashed line; 1N-F, blue short-dash line. Black
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Fig. 5. Ignition delay times: symbols, experimental data [36‒39]; initial model, black line; Varga et al. [54] model, gray 
line; LS-H, red dotted line; VCM, red dash-dotted line; LS-F, blue dashed line; 1N-F, blue short-dash line. Black stars 
are targets of DLR-SynG 2 dataset; red stars are self-inconsistent targets; green stars are targets deleted from DLR-SynG 
1 dataset.
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Fig. 6. Laminar flame speeds: symbols, experimental data [19, 42, 44, 47]; initial model, black line; Varga et al. [54] 
model, gray line; LS-H, red dotted line; VCM, red dash-dotted line; LS-F, blue dash line; 1N-F, blue short dash line.

5. Conclusions

An optimization-based framework B2BDC of 
an automated data-centric infrastructure, Process 
Informatics Model (PrIMe) was applied to the syn-
gas reaction mechanism analysis. For this reason, 
we constructed a dataset based on pertinent ex-
perimental observations, chemical kinetics model, 
and the associated uncertainties. The experimental 
Quantities of Interest (QoI) were selected through 
evaluation of ignition delay time and laminar flame 
speed uncertainties. The composed dataset was 
subjected to consistency analysis. One outcome 
of the analysis was identification of a set of ex-
perimental QoI that were most difficult or impos-
sible to match with the model; they were removed 
from the dataset for future investigation. The final 
consistent dataset with 122 experimental QoI and 
55 active variables was used for model optimiza-
tion on the feasible parameter set. The optimized 
syngas models produced with B2BDC framework 
demonstrated an improved agreement with the 
dataset QoI. The results of the present work, how-
ever, demonstrate that the LS-H optimization may 
miss some critical information of the model- data 
system. Only parameter optimization performed on 
the feasible set produces a reaction model which 
describes the experimental measurements not in-
cluded in the analysis as well as experimental tar-
gets from used dataset. The obtained optimized 
parameter values indicated parameter inadequacy, 
and the correlation analysis highlighted the direc-
tion of possible parameter modifications and mod-
el improvement.
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