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Abstract

The catalytic chemical reaction is usually carried out in a pellet where the catalyst 
is distributed throughout its porous structure. The selectivity, yield and productivity 
of the catalytic reactor often depend on the rates of chemical reactions and the 
rates of diffusion of species involved in the reactions in the pellet porous space. 
In such systems, the fast reaction can lead to the consumption of reactants close to 
the external pellet surface and creation of the dead core where no reaction occurs. 
This will result in an inefficient use of expensive catalyst. In the discussed simplified 
diffusion-reaction problems a nonlinear reaction term is of power-law type with 
a small positive reaction exponent. Such reaction term represents the kinetics of 
catalytic reaction accompanied by a strong adsorption of the reactant. The ways 
to calculate the exact solutions possessing dead cores are presented. It was also 
proved analytically that the exact solution of the nonlinear two-point boundary 
value problem satisfies physical a-priori bounds. Furthermore, the approximate 
solutions were obtained using the orthogonal collocation method for pellets of 
planar, spherical and cylindrical geometries. Numerical results confirmed that the 
length of the dead core increases for the more active catalysts due to the larger 
values of the reaction rate constant. The dead core length also depends on the pellet 
geometry. 

Article info

Received:
04 September 2018

Received in revised form:
19 October 2018

Accepted:
27 November 2018

Keywords: 
diffusion-reaction 
dead-core 
strong adsorption 
exact solution 
collocation method

1. Introduction

The chemical reactions in the petrochemical 
and chemical industries are frequently carried out 
in the fixed-bed reactors filled with catalyst pel-
lets. The catalyst material is distributed through-
out the pellet porous structure. The intrinsic rate of 
chemical reaction and the rate of diffusion of reac-
tant species from the external pellet surface to the 
pellet interior could both influence the selectivity, 
yield and productivity of the reactor. In the case of 
power-law kinetics with the small positive reaction 
exponent, the so-called dead cores can appear in 
the pellet where the reactants are fully consumed, 
and no reaction occurs. This will result in the 
inefficient use of expansive catalyst material [1, 2]. 
Recently, core-shell catalysts have been success-
fully applied for industrially important reactions 

such as Fischer-Tropsch [3] and steam methane 
reforming for hydrogen production [4]. 

In the discussed simplified diffusion-reaction 
problems there is a nonlinear term of power-law 
type which represents the kinetics of catalytic reac-
tion accompanied by a strong reactant adsorption. 
The purpose of this paper is to present the ways to 
calculate the exact solutions possessing dead cores 
and their numerical approximations based on the 
collocation method for planar, spherical and cy-
lindrical geometries [5]. The exact formula is de-
rived analytically for the solution to the dead-core 
problem in the planar case. The condition which 
separates the smooth solutions from the dead-core 
solutions is demonstrated in terms of the reaction 
rate constant and the reaction exponent. 

In Section 2, the model is presented, the dead-
core solutions are characterized, and the numerical 
approach is described. In Sections 3, the analytic 
and numerical results are illustrated, and in Section 
4 the conclusions are drawn.
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2. Diffusion-reaction model problem with 
power-law kinetics

2.1. Catalytic diffusion-reaction problem with 
strong adsorption

The diffusion-reaction problem is considered 
for three different pellet geometries. Let c = c(x), 
                , denote the unknown dimensionless 
concentration. The mathematical model for diffu-
sion and catalytic reaction in the planar (n = 0), 
cylindrical (n = 1), and spherical (n = 2) geometry 
reads as follows  
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where k>0 is the reaction rate constant, p>0 denote 
the reaction exponent and w+ = max {w, 0} stands 
for the positive part of w. In the case of             , 
the strong adsorption of reactant species on the cata-
lyst sites can be faster than the reactant supply from 
the bulk phase to the sites in the pellets by diffusion 
across the pellet boundary and in the pellet pores. 
This can lead to the total vanishing of reactant spe-
cies in some regions                                         , the 
so-called dead cores. In these regions no chemical 
reaction occurs and the significant amount of the 
usually expensive catalyst is wasted, so the knowl-
edge of the location of the dead cores plays an im-
portant role in chemical engineering. 

Notice that a weak solution to the boundary val-
ue problem (1) can be also characterized as a mini-
mizer of the following energy functional 
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in the class of functions satisfying the boundary 
condition c(1) = 1 and whose weak derivative is 
square integrable. Since the functional (2) is con-
vex, the weak solution to the boundary value prob-
lem (1) is unique. In the following lemma a-priori 
bounds of the solution to the boundary value prob-
lem (1) will be stated.
Lemma 1 Let c(x) be the weak solution to the 
boundary value problem (1). Then, it holds true

0≤c(x)≤1   for all   0≤x≤1.

Proof: Multiplying the differential Eq. (1) by 
xn(c–1)+ and integrating by parts over the domain 
Ω = (0,1) yields
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This implies that c_(x) = const = 0 due to the 
boundary condition c(1) = 1. Consequently, c(x)≥0 
for all 0≤ x≤1. 	 				  

Next, the monotonicity of solutions to problem 
(1) will be considered with respect to the reaction 
rate constant k>0.

Lemma 2 Let k1≥k2>0,         , and c1 and c2 be 
solutions to the boundary value problem (1) with 
reaction rate constants k1 and k2, respectively. 
Then, c1(x)≤c2(x) for all 0≤x≤1.

Proof: Since c1 and c2 solve the boundary value 
problem (1) with reaction rate constants k1 and k2, 
respectively, it holds
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Consequently, (c–1)+ = 0 due to the fact that the 
left hand side of the last equation is non-negative 
but the right hand side is non-positive. This means 
that c(x)≤1 for all 0≤x≤1. Let c_ = min{c,0} de-
note the negative part of c. In order to show that 
the solution c(x) is non-negative for all 0≤x≤1, the  
differential Eq. (1) is multiplied by xnc_(x) and in-
tegrated by parts. Then,
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Multiplying the above equation by xn (c1–c2)+ and integrating by parts, yields
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from which follows
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This implies that
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assuming k1≥k2>0 and according to the fact that 
              for       . Consequently, 
[c1–c2]+ = const = 0 in Ω due to [c1–c2]+ (1) = 0. This 
means that c1≤c2 in Ω.                                              ■
	
2.2. Characterization of exact dead-core solutions

The dead-core solution to the differential 
Eq. (1) can be obtained analytically using the fol-
lowing ansatz

 0))(( ≥−− +++ vuvu pp
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where 0≤a<1 is the length of the dead zone, and 
γ and β are the real-valued parameters. In the fol-
lowing, the planar case (n = 0) will be considered 
and the unknown parameters a, γ and β in (3) will 
be determined. Inserting (3) into the differential 
Eq. (1) and using the boundary condition results in 
β = (1–a)-γ, and

Multiplying the differential Eq. (1) by cx and in-
tegrating, implies
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where the integration constant is zero due to the 
boundary condition cx(0) = 0 and the necessary 
condition for the existence of the dead zone, i.e., 
c(0) = 0. Inserting (3) into (5) and evaluating at 
x = 1, yields
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Evaluating the last equation for x = 1, yields

 
0

)1(
)(

)1(
))(1( 2

=
−
−

+
−

−−
−

−

p

p

a
axk

a
ax

γ

γ

γ

γγγ  ]1,0(∈x

k
pa
2
11 +

−= γ (6)
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Consequently, the dead-core solution is of the 
following form
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where the length of the dead-zone is given by (7).
From a≥0, it can be deduced that
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which constitutes the condition for the existence of 
the dead-core solution in the case of the planar ge-
ometry. Notice that the dead-zone consists of only 

one point x = 0 if              . If                 , 

the analytic solution possesses no dead zone and 
can be expressed in terms of hypergeometric func-
tions, c.f. [1]. In the case of cylindrical and spheri-
cal geometries, the ansatz (2) leads to complicated 
algebraic equations for a and γ. In those cases, the 
dead-core solutions can be obtained numerically.

2.3. Numerical approach

Most of the standard numerical schemes based 
on fixed-point iterations fail when solving the 
non-linear boundary value problem (1). This short-
coming of standard schemes can be justified by the 
lack of contraction due to the fact that the non-lin-
ear term               is not differentiable at с = 0 if 
0<р<1. In the case of the planar geometry, the 

solution с(x) is smooth if                       , and can be

approximated numerically without any sophisti-
cated iterations but it can not be expressed by ele-
mentary functions. On the other hand, the solution 

c(x) is not smooth for k >                , and can be given 

explicitly but its approximation can not be obtained 
without numerical troubles in the iteration process 
when using standard finite element or difference 
schemes [6, 7, 8]. Our numerical approach is based 
on the collocation method using orthogonal Jacobi 
polynomials [5]. 

3. Numerical results

Several solution profiles have been calculated 
by the collocation method for the reaction expo-
nent p = 0.01 and reaction rate constants k = 5, 
7, 10, 20, 50. The concentration profiles for the 
problem in the planar geometry are illustrated in 
Fig. 1. All of them exhibit the dead zones. Similar-
ly, all concentration profiles show the dead zones 
in the case of the cylindrical geometry, as present-
ed in Fig. 2. Nevertheless, the concentration profile 
corresponding to the reaction in the spherical pellet 
does not exhibit a dead zone for the reaction rate 
constant k = 5, as shown in Fig. 3.
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Fig. 1. Solutions for dead-core problem in the case of the 
planar geometry (n = 0) for p = 0.01 and various reaction 
rate constants k = 5, 7, 10, 20, 50.

 

Fig. 3. Solutions for dead-core problem in the case of 
the spherical geometry (n = 2) for p = 0.01 and various 
reaction rate constants k = 5, 7, 10, 20, 50.
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Fig. 2. Solutions for dead-core problem in the case of 
the cylindrical geometry (n = 1) for p = 0.01 and various 
reaction rate constants k = 5, 7, 10, 20, 50.
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Notice that the dead zone length depends on the 
pellet geometry. In the case of cylindrical geome-
try, the approximate solutions presented in Fig. 2 
possess smaller dead zones compared to the corre-
sponding approximate solutions in the case of pla-
nar geometry. 

Clearly, the length of dead zone increases with 
an increase in the reaction rate constants k. This 
corresponds to the more active catalyst. Neglecting 
the discretization errors, this result can be justified 
by Lemma 2.

4. Conclusions

The explicit dead-core solution formula, the 
specific conditions for the existence of dead-zones 
and the length of the dead zone are derived for the 
diffusion-reaction problem in the planar geome-
try. Numerical illustrations and validations of the 
dead-core solutions in the cylindrical and spheri-
cal geometries are also presented. It was confirmed 
that the length of the dead zone increases for the 
more active catalysts corresponding to the larger 
values of the reaction rate constant. The dead zone 
length also depends on the pellet geometry. The 
results obtained in this paper can be useful for the 
design of catalytic reactors. The finite element col-
location schemes with a-posteriori error indicators 
for localizing dead zones will be published in the 
forthcoming works.
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