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Abstract

This paper presents a semi-analytical model for transient heat conduction in a 
composite material reinforced with small spherical inclusions. Essential to the 
derivation of the model is the assumption that the size of the inclusions is much 
smaller than the length scale characterizing the macroscopic problem. An interfacial 
thermal resistance is also present between the two phases. During heating, the 
inclusions are treated as heat sinks within the matrix, with the coupling provided 
by the boundary conditions at the surface of the embedded particles. Application 
of Duhamel’s Theorem at the particle scale provides the local relationship between 
the temperature profile in a particle and the matrix that surrounds it. A simple 
spatial discretization at the macro-scale leads to an easily solvable system of 
coupled Ordinary Differential Equations for the matrix temperature, particle 
surface temperature and a series of ψ-terms related to the heat exchange between 
phases. The interfacial thermal resistance between the two phases can lead to the 
particle temperature lagging behind that of the surrounding matrix. The resulting 
transient response of the matrix temperature cannot be reproduced by a material 
with a single effective thermal conductivity. In the case where transient methods 
are used to determine effective thermal conductivity, this transient response may 
introduce errors into the measurement.
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1. Introduction

Prediction of the effective properties of com-
posite materials is a prerequisite for their effective 
use. Derivations of effective properties of com-
posites go back to Maxwell’s initial calculations 
in 1873 for composites comprised of dispersed 
spheres [1]. In 1986, Davis proposed a method to 
calculate an effective thermal conductivity with 
spherical inclusions that extended Maxwell’s work 
[2]. The next year, Hasselman proposed a new 
effective medium approach that accounted for 
a resistance to heat flow at the interface [3], be-
fore the approach was further generalized by Nan 
in 1997 [4]. More recent works have used micro 
mechanics-based solutions to determine effective 
thermal conductivity of materials [5] and the re-
view by Zhai et al. provides a good overview of 

the relation between the different model approach-
es [6]. A commonality between these studies is that 
they consider steady state conduction through the 
multi-phase material and determine effective ma-
terial properties that yield an identical heat flux for 
a given thermal gradient. In order to describe the 
transient response of such systems, the heat ex-
change between he phases must also be taken into 
account [7]. As techniques such as the Transient 
Hot Wire Method are commonly used to determine 
the effective thermal conductivity of a material [8], 
these effects may become a source of error in the 
measurement of effective properties.

Many of the works in the literature have been 
motivated by the desire to increase the thermal 
conductivity via conductive fillers for applications 
such as electronics’ packaging [9]. In this work 
we focus on materials with low-conductivity in-
clusions for insulative applications [10, 11]. We 
pay particular attention to the multi-scale aspect 



A Multi-Scale, Semi-Analytical Model for Transient Heat Transfer in a Nano-Composite 102

Eurasian Chemico-Technological Journal 21 (2019) 101-105

of composites and derive a semi-analytical model 
capable of linking the micro-scale heat exchange 
between the particles and the matrix with the mac-
ro-scale heat transport. Our model, being semi-an-
alytical, does not require a complex/multi-scale 
mesh but instead requires only a simple discretiza-
tion of the macro-scale. 

2. Governing equations

Consider the composite slab, shown in Fig. 1, 
consisting of a matrix (phase m) reinforced with 
spherical inclusions (phase p) of radius R, where 
each phase has its own thermal conductivity 

 
Fig. 1. Graphical representation of the composite slab.

For an averaging volume, V, large enough that it contains a representative sample of each phase, yet 
small enough that the temperature does not vary significantly within it, the volume averaged heat equation 
in phase m is given by Glatzmaier and Ramirez in Eq. 1 [12].

nmp is the unit vector pointing into the matrix and 
Amp is the total interfacial area contained within 
the volume. The integral term over nmpT represents 
the reduction in conduction due to the tortuosity 
of the matrix [12]. This is considered to result in 
the conductivity being reduced to that of a matrix 
containing voids, Km,voids = 2Km (1 ‒ Vp)/(2 + Vp) as 
evaluated by Hasselman’s approach. The integral 
term over                 represents the heat exchange 
between the matrix and the particles. It can then be 
evaluated in Eq. 2, where the interfacial thermal 
resistance is γ (in         ) and the temperature of the 
particle surface is TS = Tp(r=R).

Equation 1 now takes the form of Eq. 3 where 
the particles’ effect on the heat transfer can be seen 
in both terms via the reduction matrix conductivity 
and their treatment as heat sources/sinks.

The heat equation inside an individual particle 
is given by Eq. 4. The surface boundary condition 
of heat exchange to the matrix is given in Eq. 5 and 
provides the coupling of Eqs. 3 and 4 via Eq. 2.

In this paper, the         term is solved by 

first applying Duhamel’s Theorem to solve Eq. 
4 subject to the time-dependent boundary condi-
tion, TS. If Z(r,t), Eq. 6, is the time evolution of the 
particle temperature for an initial temperature of 
zero and a surface temperature of unity, then for a 
surface temperature of TS(t), the particle tempera-
ture is given by Eq. 7 by Carslaw and Jaeger [13]. 
The thermal diffusivity, κp, is given by          .

Equation 7 is equivalent to Eq. 8.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(Km or Kp), density (ρm or ρp), specific heat capaci-
ty (cm or cp) and volume fraction (Vm or Vp, where 
Vp+Vm = 1). 
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Substituting Eq. 6 into Eq. 8 and evaluating the 
integral leads to Eq. 9.

The functions ψn(t) are described by Eq. 10, or 
in differential form in Eq. 11.

Using Eq. 9, the partial derivative term in Eq. 5 
can be evaluated to obtain Eq. 12.

From Eq. 11, it is evident that the ψn functions 
are first order, subject to the forcing function         . 
For large enough values of the n2 term, ψn can be 
reasonably approximated by its quasi-steady state 
approximation. This allows the summation to be 
split into two parts, the first n0 terms are given by 
the solutions to the ODEs in Eq. 11 and the second 
set of terms is approximated by the quasi-steady 
state approximation, leading to Eq. 13.

Equations 3, 11 and 13 can be rearranged into 
a set of n0+2 differential equations with respect to 
time, Eqs. 14‒16. Equation 14 can then be discret-
ized in the spatial dimension into N nodes, leading 
to a system of N(n0+2) ODEs that can be solved 
using standard numerical methods.

3. Numerical Application

The test-case involves a 1 cm thick slab, initially 
at Tint where the surface temperature is Tint + 1 K
for t > 0 s. The properties of the particles and

matrix are,                    ,                       ,                     ,
  
                         ,                           and                           . The 

time-evolution of the temperature at the centre 
of the slab is shown in Figs. 2 and 3 for the two 
limiting cases of high and low thermal resistanc-
es. The average temperature is the spatial average, 

                                  where                                          . 

For comparison, simulations of homogenous slabs 
having the effective thermal conductivities predict-
ed by Maxwell and Hasselman are included. At the 
high thermal resistance limit, the particles should 
behave as voids (no heat exchange with matrix). 
The time-evolution of         in the model in Fig. 2 
behaves as predicted by the Hasselman estimate, 
while the Maxwell estimate overestimates the ther-
mal conductivity because it assumes that γ is zero.

 

Fig. 2. The proposed model aligns well (the curves 
overlap) with the Hasselman estimate at the high 
resistance limit leading to no heat exchange with the 
particles (γ = 1015 m² ∙ K/W, Vp = 0.1, R = 10 µm).

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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In the limit as the thermal resistance tends to 
zero, the Maxwell and Hasselman estimates con-
verge in Fig. 3 while the proposed model underes-
timates the conductivity of the composite. This is 
expected as the constant surface temperature at the 
particle-level used in this model implies no ther-
mal gradient and therefore no heat flux through the 
particles themselves.

 
Fig. 3. The proposed model underestimates the 
conductivity relative to Maxwell and Hasselman 
estimates at the low thermal resistance limit (γ = 10-15 
m² ∙ K/W, Vp = 0.1, R = 10 µm).

When a small thermal resistance is present, a 
temperature lag appears between the particle and 
the matrix, as shown in Fig. 4. As the particles 
have a lower temperature than the matrix, they 
behave like heat sinks and slow the temperature 
increase at the center of the slab, leading to an ap-
parent decrease in thermal conductivity. The tem-
perature response of a homogenous slab having the 
Keffective that minimizes the sum of squared error 
(SSE) between the predicted temperature and the 
matrix temperature is also included in the figure.

 
Fig. 4. When a small thermal resistance is present, 
the particle temperature lags behind that of the matrix
(γ = 10-2 m² ∙ K/W, Vp = 0.1, R = 10 µm).

An interesting result of these simulations is that 
the particles also induce a spreading, or smearing 
in the temperature response. This is more clearly 
illustrated in the difference between the tempera-
tures at the center of three different homogenous 
slabs and at the center of the composite in Fig. 5. 
The Keffective that minimized the SSE does not per-
fectly replicate the transient response of composite 
as there is initially an underestimation and later an 
overestimation relative to the composite’s tem-
perature.

 
Fig. 5. Absolute errors between the temperatures 
predicted for homogenous slabs and the modelled 
composite (γ = 10-2 m² ∙ K/W, Vp = 0.1, R = 10 µm).

The result is that the transient response of the 
composite materials cannot be precisely replicated 
using a single effective conductivity; the transient 
effects of the particles need to be taken into ac-
count. As the form of the matrix temperature rise 
does not follow exactly the analytical solution for 
an effective material, there may be errors intro-
duced into the calculation of the effective conduc-
tivity. For example, the Keffective that minimizes the 
SSE in Fig. 5 will depend on the range of time over 
which the SSE is calculated/minimized; using time 
ranges of 1 s, 0.25 s and 0.1 s leads to Keffective val-
ues of 236, 241 and 249 W/(m∙K), respectively.

4. Conclusions

A semi-analytical method has been proposed for 
evaluating transient heat flow in composite mate-
rials. These materials contain spherical inclusions 
of a lower thermal conductivity and size of which 
is much smaller than the macro-scale dimension 
of the composite. The heat exchange between the 
two phases is taken into account and the interfacial 
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thermal resistance between the particles and ma-
trix results in particle temperatures that lag behind 
those of the matrix. This leads to a smearing, or 
spreading out of the overall temperature evolution 
that cannot be accurately reproduced by treating 
the composite as a homogenous material having a 
single value of effective thermal conductivity. The 
example case discussed in Section 3 showed how 
this smearing can lead to fitted values of effective 
thermal conductivity that depend on the range of 
time used to obtain the fit. This may introduce a 
souce of error into characterization methods that 
measure only a part of the transient response.
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