Study of the Ability of Reducing Saccharides to Chemically Transform Lignin

  • O. V. Lepilova G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045, Ivanovo, Akademicheskaya st, 1, Russia
  • G. Spigno Institute of Oenology and Agro-Food Engineering, Università Cattolica del Sacro Cuore, Via Emilia Parmense, 84 – 29122 Piacenza, Italy
  • S. V. Aleeva G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045, Ivanovo, Akademicheskaya st, 1, Russia
  • S. A. Koksharov G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, 153045, Ivanovo, Akademicheskaya st, 1, Russia

Abstract

The efficiency of chemical transformations of lignin obtained from Picea excelsa wood under the action of galactose, galacturonic acid and xylose (which can be obtained by enzymatic hydrolysis of hemicelluloses and pectin containing in plant material) was evaluated. The results were compared with use of traditional reducing agent which was borohydride sodium. Using the method of differential UV-spectroscopy was confirmed the increase of a number of phenolic hydroxyl units by Xyl, Gal and GA. The increase of lignin reactivity was controlled to sulfuric acid and to peroxide hydrogen. Similarly to NaBH4, a nucleophilic addition mechanism for the reaction of the reducing saccharides with lignin was revealed. Reduction by NaBH4, Xyl, GA and Gal increased the lignin reactivity to acid solubilisation and to peroxide oxidation.

 

References

[1]. E. Aracri and T. Vidal. Carbohydr Polym. 83 (2001) 1355‒1362. Crossref

[2]. C. Valls, T. Vidal, and M.B. Roncero. Process Biochem. 45 (2010) 425‒430. Crossref

[3]. Y. Li and I. Hardin, Text. Chem. Color. 29 (8) (1997) 71‒76.

[4]. G. Spigno, L. Maggi, D. Amendola, M. Dragoni, and D.M. De Faveri. Ind. Crops Prod. 46 (2013) 283–289. Crossref

[5]. X.F. Tian, Z. Farig, and F. Guo, Biofuel Bioprod. Bior. 6 (3) (2012) 335‒350. Crossref

[6]. H. Palonen, Role of lignin in the enzymatic hydrolysis of lignocellulose. Espoo, Finland, Helsinki University of Technology: VTT Publications 520, 2004, p. 84.

[7]. Á.T. Martínez, F.J. Ruiz-Dueñas, M.J. Martínez, J.C. del Río, and A. Gutiérrez, Curr. Opin. Biotechnol. 20 (2009) 348–357. Crossref

[8]. E.M. Woolridge, Biomass. Catalysts. 4 (2014) 1–35. Crossref

[9]. C.J. Jacobs, R.A. Vendetti, and T.W. Joyce, Tappi J. 81 (2) (1998) 143–147.

[10]. L. Vikari, A. Kantelinen, J. Sundquist, and M. Linko, FEMS Microbiol. Rev. 13 (1994) 335– 350. Crossref

[11]. O.V. Lepilova, S.V. Aleeva, and S.A. Koksharov, Russ. J. Org. Chem. 48 (1) (2012) 83–88. Crossref

[12]. G. Aulin-Erdtman and L. Hegbom, Spectrographic contribution to lignin VIII. Ae-Studies on Brauns native lignins from coniferous wood. Svensk. Papperstidn. 61 (7) (1958) 187–210.

[13]. F.E. von Brauns, The chemistry of lignin. Academic Press. Inc. Publishers, New York, 1952, p. 808.

[14]. Y.Z. Lai and K.V. Sarkanen, (Lignin) Occurrence and structure, in Lignin: Occurrence, Formation, Structure and Reactions, Ed. by Sarkanen, K.V., and Ludwig, C.H. Wiley-Interscience, New York, 1971, p. 165–240.

[15]. G.F. Zakis, Functional analysis of lignins and their derivatives. Atlanta, TAPPI, 1994, p. 94.

[16]. N.N. Bambalov, Eurasian Soil. Sci. 44 (10) (2011) 1090–1096. Crossref

[17]. P.M. Froass, A.J. Ragauskas and J.J. Jiang, Wood Chem. Technol. 16 (4) (1996) 347–365. Crossref

[18]. M. Haugan and O. Gregersen, Hydrogen peroxide bleaching of mechanical pulp fines. Nord Pulp.Pap. Res. J. 21 (1) (2006) 105–110. Crossref

[19]. M.S. Jahan and S.P. Mun, J. Wood Chem. Technol. 27 (2) (2007) 83–98. Crossref

[20]. G.V. Chistyakova, S.A. Koksharov, Russ. J. App. Chem. 83 (11) (2010) 1930‒1934. Crossref
Published
2017-01-25
How to Cite
[1]
O. Lepilova, G. Spigno, S. Aleeva, and S. Koksharov, “Study of the Ability of Reducing Saccharides to Chemically Transform Lignin”, Eurasian Chem. Tech. J., vol. 19, no. 1, pp. 31-40, Jan. 2017.
Section
Articles