From Precursors to Pollutants: Some Advances in Combustion Chemistry Diagnostics
DOI:
https://doi.org/10.18321/ectj174Abstract
The present assessment and prediction of potential pollutant emissions from combustion systems often rely on dedicated combustion models. Their validation depends on the critical examination of the relevant chemical reaction pathways. To this end, a number of combustion diagnostic techniques are available which can probe important chemical constituents in situ, thus providing direct information on the progress of the combustion reactions. Here, some recent experimental advances for the investigation of a suite of targets from molecular intermediates and soot precursors to nascent particles will be presented. Examples include the application of quantum cascade laser absorption spectroscopy (QCLAS), molecular-beam mass spectrometry (MBMS) with different ionization schemes, photoelectron–photoion coincidence (PEPICO) spectroscopy, helium ion microscopy (HIM), and polarization-modulated infrared reflection–absorption spectroscopy (PM-IRRAS).
References
[2]. N.A.H. Janssen, M.E. Gerlofs-Nijland, T. Lanki, R.O. Salonen, F. Cassee, G. Hoek, P. Fischer, B. Brunekreef, M. Krzyzanowski, Health effects of black carbon, World Health Organization 2012, http://www.euro.who.int/_
data/ assets/pdf_file/0004/162535 e96541.pdf
[3]. L.G. Anderson, Energy Environ. Sci. 2 (2009) 1015–1037.
[4]. S.M. Corrêa, G. Arbilla, E.M. Martins, S.L. Quitério, C. de Souza Guimarães, L.V. Gatti, Atmos. Environ. 44 (2010) 2302–2308.
[5]. O. Deutschmann, J.-D. Grunwaldt, Chem. Ing. Tech. 85 (2013) 595–617.
[6]. S.C. Davis, S.W. Diegel, R.G. Boundy, Transportation Energy Data Book Edition 31, Oak Ridge National Laboratory, July 2012, http:// cta.ornl.gov/data.
[7]. H. Cai, S. D. Xie, Atmos. Chem. Phys. 9 (2009) 6983–7002.
[8]. US Energy Information Administration, International Energy Outlook 2011, http://www. eia.gov/emeu/international .
[9]. BP Statistical Review of World Energy June 2013, http://www.bp.com/content/dam/bp/ pdf/statistical-review/statistical_review_of_world_energy_2013.pdf.
[10]. T. Li, H. Ogawa, J. Autom. Engr. 223 (2009) 673–683.
[11]. B.-Q. He, M.-B. Liu, J. Yuan, H. Zhao, Fuel 108 (2013) 668–674.
[12]. B.-Q. He, J. Yuan, M.-B. Liu, H. Zhao, Fuel 115 (2014) 758–764.
[13]. C.K. Westbrook, Y. Mizobuchi, T.J. Poinsot, P.J. Smith, J. Warnatz, Proc. Combust. Inst. 30 (2005) 125–157.
[14]. P.A. Vlasov, J. Warnatz, Proc. Combust. Inst. 29 (2002) 2335–2341.
[15]. G.L. Agafonov, I. Naydenova, P.A. Vlasov, J. Warnatz, Proc. Combust. Inst. 31 (2007) 575–583.
[16]. J. Warnatz, U. Maas, R.W. Dibble, Combustion, 4th ed., Springer, Berlin, Heidelberg, New York, 2006.
[17]. T. Lu, C.K. Law, Prog. Energy Combust. Sci. 35 (2009) 192–215.
[18]. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., Gordon and Breach, Amsterdam, 1996.
[19]. K. Kohse-Höinghaus, J.B. Jeffries, eds., Applied Combustion Diagnostics, Taylor & Francis, New York,
London, 2002.
[20]. M.A. Linne, Spectroscopic Measurements, Academic Press, London, 2002.
[21]. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Combust. Inst. 30 (2005) 89–123.
[22]. R.K. Hanson, Proc. Combust. Inst. 33 (2011) 1–40.
[23]. N. Hansen, T.A. Cool, P.R. Westmoreland, K. Kohse-Höinghaus, Prog. Energy Combust. 35 (2009) 168–191.
[24]. C.A. Taatjes, N. Hansen, D.L. Osborn, K. Kohse-Höinghaus, T.A. Cool, P.R. Westmoreland, Phys. Chem. Chem. Phys. 10 (2008) 20–34.
[25]. Y. Li, F. Qi, Acc. Chem. Res. 43 (2010) 68–78.
[26]. S.H. Dürrstein, M. Aghsaee, L. Jerig, M.C. Schulz, Rev. Sci. Instrum. 82 (2001) 084103.
[27]. H. Guo, W. Sun, F.M. Haas, T. Farouk, F.L. Dryer, Y. Ju, Proc. Combust. Inst. 34 (2013) 573–581.
[28]. F. Battin-Leclerc, O. Herbinet, P.-A. Glaude, R. Fournet, Z. Zhou, L. Deng, H. Guo, M. Xie, F. Qi, Proc. Combust. Inst. 34 (2013) 325–331.
[29]. C.A. Taatjes, N. Hansen, A. McIlroy, J.A. Miller, J.P. Senosiain, S.J. Klippenstein, F. Qi, L. Sheng, Y. Zhang, T.A. Cool, J. Wang, P.R. Westmoreland, M.E. Law, T. Kasper, K. Kohse-Höinghaus, Science 308 (2005) 1887–1889.
[30]. F. Qi, Proc. Combust. Inst. 34 (2013) 33–63.
[31]. B. Yang, P. Oßwald, Y. Li, J. Wang, L. Wei, Z. Tian, F. Qi, K. Kohse-Höinghaus, Combust. Flame 148 (2007) 198–209.
[32]. N. Hansen, T. Kasper, S.J. Klippenstein, P.R. Westmoreland, M.E. Law, C.A. Taatjes, K. Kohse-Höinghaus, J. Wang, T.A. Cool, J. Phys. Chem. A 111 (2007) 4081–4092.
[33]. Patrick Nau, Entwicklung und Optimierung absorptionsspektroskopischer Techniken zur Untersuchung von Verbrennungsprozessen, PhD Thesis (in German), Bielefeld University, October 2012; Shaker-Verlag, Aachen, 2012.
[34]. Julia Koppmann, Tomographische Absorptionsuntersuchungen im mittleren Infrarotbereich mittels Quantenkaskadenlasern zur Speziesund Temperaturbestimmung in Flammen, M. Sc. Thesis (in German), Bielefeld University, November 2012.
[35]. J. Wang, M. Chaos, B. Yang, T.A. Cool, F.L. Dryer, T. Kasper, N. Hansen, P. Oßwald, K. Kohse-Höinghaus, P.R. Westmoreland, Phys. Chem. Chem. Phys. 11 (2009) 1328–1339.
[36]. M. Schenk, N. Hansen, H. Vieker, A. Beyer, A. Gölzhäuser, K. Kohse-Höinghaus, presentation at the 35th International Symposium on Combustion, San Francisco, USA, August 3-8, 2014, and Proc. Combust.
Inst. (2014), http://dx.doi.org/10.1016/j.proci.2014.06.139
[37]. A.D. Abid, N. Heinz, E.D. Tolmachoff, D.J. Phares, C.S. Campbell, H. Wang, Combust. Flame 154 (2008) 775–788.
[38]. M. Schenk, S. Lieb, H. Vieker, A. Beyer, A. Gölzhäuser, H. Wang, K. Kohse-Höinghaus, ChemPhysChem 14 (2013) 3248–3254.
[39]. M. Schenk, S. Lieb, H. Vieker, A. Beyer, A. Gölzhäuser, H. Wang, K. Kohse-Höinghaus, presentation at the 35th International Symposium on Combustion, San Francisco, USA, August 3-8, 2014, and Proc. Combust.
Inst. (2014), http://dx.doi.org/10.1016/j.proci.2014.05.009
[40]. C.J. Dasch, Appl. Opt. 31 (1992) 1146–1152.
[41]. R. Villarreal, P.L. Varghese, Appl. Opt. 44 (2005) 6786–6795.
[42]. M. Schenk, L. Leon, K. Moshammer, P. Oßwald, T. Zeuch, L. Seidel, F. Mauss, K. Kohse-Höinghaus, Combust. Flame 160 (2013) 487–503.
[43]. P. Oßwald, K. Kohse-Höinghaus, U. Struckmeier, T. Zeuch, L. Seidel, L. Leon, F. Mauss, Z. Phys. Chem. 225 (2011) 1029–1054.
[44]. A. Brockhinke, A. Bülter, J.C. Rolon, K. Kohse-Höinghaus, Appl. Phys. B 72 (2001) 491–496.
[45]. S.A. Skeen, H.A. Michelsen, K.R. Wilson, D.M. Popolan, A. Violi, N. Hansen, J. Aerosol Sci. 58 (2013) 86–102.
[46]. T.A. Cool, A. McIlroy, F. Qi, P.R. Westmoreland, L. Poisson, D.S. Peterka, M. Ahmed, Rev. Sci. Instrum. 76 (2005) 094102.
[47]. A. Bodi, P. Hemberger, D.L. Osborn, B. Sztaray, J. Phys. Chem. Lett. 4 (2013) 2948–2952.
[48]. P. Oßwald, P. Hemberger, T. Bierkandt, E. Akyildiz, M. Köhler, A. Bodi, T. Kasper, Rev. Sci. Instrum. 85 (2013) 025101.
[49]. D. Felsmann, K. Moshammer, J. Krüger, A. Lackner, A. Brockhinke, T. Kasper, T. Bierkandt, E. Akyildiz, N. Hansen, A. Lucassen, P. Oßwald, M. Köhler, G.A. Garcia, L. Nahon, P. Hemberger, A. Bodi, T. Gerber, K. Kohse-Höinghaus, presentation at the 35th International Symposium on Combustion, San Francisco, USA, August 3-8, 2014, and Proc. Combust. Inst. (2014), http://dx.doi.org/10.1016/j.proci.2014.05.151
[50]. G.A. Garcia, B.K. Cunha de Miranda, M. Tia, S. Daly, L. Nahon, Rev. Sci. Instrum. 84 (2013) 053112.
[51]. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9 (2012) 671–675.
[52]. A.D. Abid, J. Camacho, D.A. Sheen, H. Wang, Combust. Flame 156 (2009) 1862–1870.
[53]. C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita, Fuel 87 (2008) 1014–1030.
[54]. C. Togbé, L.-S. Tran, D. Liu, D. Felsmann, P. Oßwald, P.-A. Glaude, B. Sirjean, R. Fournet, F. Battin-Leclerc, K. Kohse-Höinghaus, Combust. Flame 161 (2014) 780–797.
[55]. Z. Zhu, D.K. Li, J. Liu, Y.J. Wei, S.H. Liu, Appl. Therm. Engr. 35 (2012) 9–14.
[56]. H.J. Curran, W.J. Pitz, C.K. Westbrook, P. Dagaut, J.-C. Boettner, M. Cathonnet, Int. J. Chem. Kinet. 30 (1998) 229–241.
[57]. X.L. Zheng, T.F. Lu, C.K. Law, C.K. Westbrook, H.J. Curran, Proc. Combust. Inst. 30 (2005) 1101–1109.
[58]. T. Wada, A. Sudholt, H. Pitsch, N. Peters, Combust. Theory Model. 17 (2013) 906–934.
[59]. H. Guo, W. Sun, F.M. Haas, T. Farouk, F.L. Dryer, Y. Ju, Proc. Combust. Inst. 34 (2013) 573–581.
[60]. K. Zhang, K. Moshammer, P. Oßwald, K. Kohse-Höinghaus, Proc. Combust. Inst. 34 (2013) 763–770.
[61]. F. Herrmann, B. Jochim, P. Oßwald, L. Cai, H. Pitsch, K. Kohse-Höinghaus, Combust. Flame 161 (2014) 384–397.
[62]. S.L. Fischer, F.L. Dryer, H.J. Curran, Int. J. Chem. Kinet. 32 (2000) 713–740.
[63]. H.J. Curran, S.L. Fischer, F.L. Dryer, Int. J. Chem. Kinet. 32 (2000) 741–759.
[64]. Z. Zhao, M. Chaos, F.L. Dryer, Int. J. Chem. Kinet. 40 (2008) 1–18.
[65]. W.K. Metcalfe, S. Burke, S. Ahmed, H.J. Curran, Int. J. Chem. Kinet. 45 (2013) 638–675.
[66]. D. Liu, J. Santner, C. Togbé, D. Felsmann, J. Koppmann, A. Lackner, X. Yang, X. Shen, Y. Ju, K. Kohse-Höinghaus, Combust. Flame 160 (2013) 2654–2668.
[67]. F. Herrmann, P. Oßwald, K. Kohse-Höinghaus, Proc. Combust. Inst. 34 (2013) 771–778.
[68]. B. Brumfield, W. Sun, Y. Ju, G. Wysocki, J. Phys. Chem. Lett. 4 (2013) 872–876.
[69]. P.A. Skovorodko, A.G. Tereshchenko, O.P. Korobeinichev, D.A. Knyazkov, A.G. Shmakov, Combust. Theory Model. 17 (2013) 1–24.
[70]. U. Struckmeier, P. Oßwald, T. Kasper, L. Böhling, M. Heusing, M. Köhler, A. Brockhinke, K. Kohse-Höinghaus, Z. Phys. Chem. 223 (2009) 503–537.
[71]. V. Gururajan, K. Kohse-Höinghaus, F. Egolfopoulos, presentation at the 35th International Symposium on Combustion, San Francisco, USA, August 3-8, 2014, and Proc. Combust. Inst. (2014), http://dx.doi.org/
10.1016/j.proci. 2014.06.046
[72]. W. Ren, A. Farooq, D. Davidson, R.K. Hanson, Appl. Phys. B 107 (2012) 849–860.
[73]. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Appl. Opt. 53 (2014) 1938–1946.
[74]. M.B. Sajid, E. Es-Sebbar, T. Javed, C. Fittschen, A. Farooq, Int. J. Chem. Kinet. 46 (2014) 275–284.
[75]. J. Koppmann, A. Lackner, P. Nau, A. Brockhinke, K. Kohse-Höinghaus, 8th U.S. National Combustion Meeting, Park City, Utah, May 19-22, 2013.
[76]. P. Nau, J. Koppmann, A. Lackner, A. Brockhinke, Appl. Phys. B (2014), submitted for publication.
[77]. D. Liu, C. Togbé, L.-S. Tran, D. Felsmann, P. Oßwald, P. Nau, J. Koppmann, A. Lackner, P.- A. Glaude,
B. Sirjean, R. Fournet, F. Battin-Leclerc, K. Kohse-Höinghaus, Combust. Flame 161 (2014), 748–765.
[78]. P. Nau, J. Koppmann, A. Lackner, A. Brockhinke, K. Kohse-Höinghaus, Appl. Phys. B (2014) submitted for publication.
[79]. D.G. Goodwin, CANTERA C++ User’s Guide, 2002, Chem.Vap. Depos. XVI and EuroCVD 14 (2003) 08.
[80]. HITRAN, http://www.cfa.harvard.edu/hitran/, 2008 and HITEMP, http://www.cfa.harvard. edu/hitemp/, 2010.
[81]. C.J. Danby, J.H.D. Eland, Int. J. Mass Spectrom. Ion Phys. 8 (1972) 153–161.
[82]. B. Brehm, J.H.D. Eland, R. Frey, A. Küstler, Int. J. Mass Spectrom Ion Phys. 12 (1973) 213–224.
[83]. T. Baer, Y. Li, Int. J. Mass Spectrom. 219 (2002) 381–389.
[84]. B. Sztáray, T. Baer, Rev. Sci. Instrum. 74 (2003) 3763–3768.
[85]. G.A. Garcia, H. Soldi-Lose, L. Nahon, Rev. Sci. Instrum. 80 (2009) 023102.
[86]. A. Bodi, M. Johnson, T. Gerber, Z. Gengeliczki, B. Sztáray, T. Baer, Rev. Sci. Instrum. 80 (2009) 034101.
[87]. X. Tang, X. Zhou, M. Niu, S. Liu, J. Sun, X. Shan, F. Liu, L. Sheng, Rev. Sci. Instrum. 80 (2009) 113101.
[88]. P. O'Keeffe, P. Bolognesi, M. Coreno, A. Moise, R. Richter, G. Cautero, L. Stebel, R. Sergo, L. Pravica,
Y. Ovcharenko, L. Avaldi, Rev. Sci. Instrum. 82 (2011) 033109.
[89]. A. Bodi, P. Hemberger, T. Gerber, B. Sztáray, Rev. Sci. Instrum. 83 (2012) 083105.
[90]. M. Steinbauer, P. Hemberger, I. Fischer, A. Bodi, ChemPhysChem 12 (2011) 1795–1797.
[91]. P. Hemberger, M. Steinbauer, M. Schneider, I. Fischer, M. Johnson, A. Bodi, T. Gerber, J. Phys. Chem. A 114 (2010) 4698–4703.
[92]. P. Hemberger, M. Lang, B. Noller, I. Fischer, C. Alcaraz, B.K. Cunha de Miranda, G.A. Garcia, H. Soldi-Lose,
J. Phys. Chem. A 115 (2011) 2225–2230.
[93]. G.A. Garcia, L. Nahon, I. Powis, Rev. Sci. Instrum. 75 (2004) 4989–4996.
[94]. NIST Webbook Chemistry, Ionization energetics data, compiled by S.G. Lias, H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron, J.L. Holmes, R.D. Levin, J.F. Liebman, S.A. Kafafi, http://webbook.nist.gov/chemistry/
[95]. A.D. Baker, C. Baker, C.R. Brundle, D.W. Turner, Int. J. Mass Spectrom. Ion Phys. 1 (1968) 285–301.
[96]. F. Egolfopoulos, N. Hansen, Y. Ju, K. Kohse-Höinghaus, C.K. Law, F. Qi, Prog. Energy Combust. Sci. 43 (2014) 36–67.
[97]. B.S. Haynes, H. Gg. Wagner, Prog. Energy Combust. Sci. 7 (1981) 229–273.
[98]. A. D’Anna, Proc. Combust. Inst. 32 (2009) 593–613.
[99]. H. Wang, Proc. Combust. Inst. 33 (2011) 41–67.
[100]. H. Bockhorn, A. D’Anna, A.F. Sarofim, H. Wang (Eds.), Combustion Generated Fine Carbonaceous Particles, KIT Scientific Publishing, 2009.
[101]. C.S. McEnally, L.D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 32 (2006) 247–294.
[102]. S.-H. Chung, A. Violi, Proc. Combust. Inst. 33 (2011) 693–700.
[103]. D. Chen, Z. Zainuddin, E. Yapp, J. Ackroyd, S. Mosbach, M. Kraft, Proc. Combust. Inst. 32 (2013) 1827–1835.
[104]. Y. Bouvier, C. Mihesan, M. Ziskind, E. Therssen, C. Focsa, J.F. Pauwels, P. Desgroux, Proc. Combust. Inst. 31 (2007) 841– 849.
[105]. A. Faccinetto, P. Desgroux, M. Ziskind, E. Therssen, C. Focsa, Combust. Flame 158 (2011) 227–239.
[106]. B. Apicella, A. Carpentieri, M. Alfè, R. Barbella, A. Tregrossi, P. Pucci, A. Ciajolo, Proc. Combust. Inst. 31 (2007) 547–553.
[107]. S.A. Skeen, B. Yang, H.A. Michelsen, J.A. Miller, A. Violi, N. Hansen, Proc. Combust. Inst. 34 (2013) 1067–1075.
[108]. J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122–136.
[109]. S. Stein, A. Farr, J. Phys. Chem. 89 (1985) 3714–3725.
[110]. C.K. Gaddam, R.L. Vander Wal, Combust. Flame 160 (2013) 2517–2528.
[111]. M. Alfè, B. Apicella, R. Barbella, J.-N. Rouzaud, A. Tregrossi, A. Ciajolo, Proc. Combust. Inst. 32 (2009) 697–704.
[112]. J.P. Cain, P.L. Gassman, H. Wang, A. Laskin, Phys. Chem. Chem. Phys. 12 (2010) 5206–5218.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.