From Precursors to Pollutants: Some Advances in Combustion Chemistry Diagnostics

Authors

  • J. Krüger Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
  • J. Koppmann Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
  • P. Nau Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
  • A. Brockhinke Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
  • M. Schenk Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
  • N. Hansen Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA
  • U. Werner Department of Physics, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany
  • K. Kohse-Höinghaus Department of Chemistry, Bielefeld University, Universitätsstraße 25, D-33615 Bielefeld, Germany

DOI:

https://doi.org/10.18321/ectj174

Abstract

The present assessment and prediction of potential pollutant emissions from combustion systems often rely on dedicated combustion models. Their validation depends on the critical examination of the relevant chemical reaction pathways. To this end, a number of combustion diagnostic techniques are available which can probe important chemical constituents in situ, thus providing direct information on the progress of the combustion reactions. Here, some recent experimental advances for the investigation of a suite of targets from molecular intermediates and soot precursors to nascent particles will be presented. Examples include the application of quantum cascade laser absorption spectroscopy (QCLAS), molecular-beam mass spectrometry (MBMS) with different ionization schemes, photoelectron–photoion coincidence (PEPICO) spectroscopy, helium ion microscopy (HIM), and polarization-modulated infrared reflection–absorption spectroscopy (PM-IRRAS).

 

References

[1]. O. Boucher, O.D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen, Y. Kondo, H. Liao, U. Lohmann, P. Rasch, S.K. Satheesh, S. Sherwood, B. Stevens, X.Y. Zhang, 2013: Clouds and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

[2]. N.A.H. Janssen, M.E. Gerlofs-Nijland, T. Lanki, R.O. Salonen, F. Cassee, G. Hoek, P. Fischer, B. Brunekreef, M. Krzyzanowski, Health effects of black carbon, World Health Organization 2012, http://www.euro.who.int/_
data/ assets/pdf_file/0004/162535 e96541.pdf

[3]. L.G. Anderson, Energy Environ. Sci. 2 (2009) 1015–1037.

[4]. S.M. Corrêa, G. Arbilla, E.M. Martins, S.L. Quitério, C. de Souza Guimarães, L.V. Gatti, Atmos. Environ. 44 (2010) 2302–2308.

[5]. O. Deutschmann, J.-D. Grunwaldt, Chem. Ing. Tech. 85 (2013) 595–617.

[6]. S.C. Davis, S.W. Diegel, R.G. Boundy, Transportation Energy Data Book Edition 31, Oak Ridge National Laboratory, July 2012, http:// cta.ornl.gov/data.

[7]. H. Cai, S. D. Xie, Atmos. Chem. Phys. 9 (2009) 6983–7002.

[8]. US Energy Information Administration, International Energy Outlook 2011, http://www. eia.gov/emeu/international .

[9]. BP Statistical Review of World Energy June 2013, http://www.bp.com/content/dam/bp/ pdf/statistical-review/statistical_review_of_world_energy_2013.pdf.

[10]. T. Li, H. Ogawa, J. Autom. Engr. 223 (2009) 673–683.

[11]. B.-Q. He, M.-B. Liu, J. Yuan, H. Zhao, Fuel 108 (2013) 668–674.

[12]. B.-Q. He, J. Yuan, M.-B. Liu, H. Zhao, Fuel 115 (2014) 758–764.

[13]. C.K. Westbrook, Y. Mizobuchi, T.J. Poinsot, P.J. Smith, J. Warnatz, Proc. Combust. Inst. 30 (2005) 125–157.

[14]. P.A. Vlasov, J. Warnatz, Proc. Combust. Inst. 29 (2002) 2335–2341.

[15]. G.L. Agafonov, I. Naydenova, P.A. Vlasov, J. Warnatz, Proc. Combust. Inst. 31 (2007) 575–583.

[16]. J. Warnatz, U. Maas, R.W. Dibble, Combustion, 4th ed., Springer, Berlin, Heidelberg, New York, 2006.

[17]. T. Lu, C.K. Law, Prog. Energy Combust. Sci. 35 (2009) 192–215.

[18]. A.C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species, 2nd ed., Gordon and Breach, Amsterdam, 1996.

[19]. K. Kohse-Höinghaus, J.B. Jeffries, eds., Applied Combustion Diagnostics, Taylor & Francis, New York,
London, 2002.

[20]. M.A. Linne, Spectroscopic Measurements, Academic Press, London, 2002.

[21]. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Combust. Inst. 30 (2005) 89–123.

[22]. R.K. Hanson, Proc. Combust. Inst. 33 (2011) 1–40.

[23]. N. Hansen, T.A. Cool, P.R. Westmoreland, K. Kohse-Höinghaus, Prog. Energy Combust. 35 (2009) 168–191.

[24]. C.A. Taatjes, N. Hansen, D.L. Osborn, K. Kohse-Höinghaus, T.A. Cool, P.R. Westmoreland, Phys. Chem. Chem. Phys. 10 (2008) 20–34.

[25]. Y. Li, F. Qi, Acc. Chem. Res. 43 (2010) 68–78.

[26]. S.H. Dürrstein, M. Aghsaee, L. Jerig, M.C. Schulz, Rev. Sci. Instrum. 82 (2001) 084103.

[27]. H. Guo, W. Sun, F.M. Haas, T. Farouk, F.L. Dryer, Y. Ju, Proc. Combust. Inst. 34 (2013) 573–581.

[28]. F. Battin-Leclerc, O. Herbinet, P.-A. Glaude, R. Fournet, Z. Zhou, L. Deng, H. Guo, M. Xie, F. Qi, Proc. Combust. Inst. 34 (2013) 325–331.

[29]. C.A. Taatjes, N. Hansen, A. McIlroy, J.A. Miller, J.P. Senosiain, S.J. Klippenstein, F. Qi, L. Sheng, Y. Zhang, T.A. Cool, J. Wang, P.R. Westmoreland, M.E. Law, T. Kasper, K. Kohse-Höinghaus, Science 308 (2005) 1887–1889.

[30]. F. Qi, Proc. Combust. Inst. 34 (2013) 33–63.

[31]. B. Yang, P. Oßwald, Y. Li, J. Wang, L. Wei, Z. Tian, F. Qi, K. Kohse-Höinghaus, Combust. Flame 148 (2007) 198–209.

[32]. N. Hansen, T. Kasper, S.J. Klippenstein, P.R. Westmoreland, M.E. Law, C.A. Taatjes, K. Kohse-Höinghaus, J. Wang, T.A. Cool, J. Phys. Chem. A 111 (2007) 4081–4092.

[33]. Patrick Nau, Entwicklung und Optimierung absorptionsspektroskopischer Techniken zur Untersuchung von Verbrennungsprozessen, PhD Thesis (in German), Bielefeld University, October 2012; Shaker-Verlag, Aachen, 2012.

[34]. Julia Koppmann, Tomographische Absorptionsuntersuchungen im mittleren Infrarotbereich mittels Quantenkaskadenlasern zur Speziesund Temperaturbestimmung in Flammen, M. Sc. Thesis (in German), Bielefeld University, November 2012.

[35]. J. Wang, M. Chaos, B. Yang, T.A. Cool, F.L. Dryer, T. Kasper, N. Hansen, P. Oßwald, K. Kohse-Höinghaus, P.R. Westmoreland, Phys. Chem. Chem. Phys. 11 (2009) 1328–1339.

[36]. M. Schenk, N. Hansen, H. Vieker, A. Beyer, A. Gölzhäuser, K. Kohse-Höinghaus, presentation at the 35th International Symposium on Combustion, San Francisco, USA, August 3-8, 2014, and Proc. Combust.
Inst. (2014), http://dx.doi.org/10.1016/j.proci.2014.06.139

[37]. A.D. Abid, N. Heinz, E.D. Tolmachoff, D.J. Phares, C.S. Campbell, H. Wang, Combust. Flame 154 (2008) 775–788.

[38]. M. Schenk, S. Lieb, H. Vieker, A. Beyer, A. Gölzhäuser, H. Wang, K. Kohse-Höinghaus, ChemPhysChem 14 (2013) 3248–3254.

[39]. M. Schenk, S. Lieb, H. Vieker, A. Beyer, A. Gölzhäuser, H. Wang, K. Kohse-Höinghaus, presentation at the 35th International Symposium on Combustion, San Francisco, USA, August 3-8, 2014, and Proc. Combust.
Inst. (2014), http://dx.doi.org/10.1016/j.proci.2014.05.009

[40]. C.J. Dasch, Appl. Opt. 31 (1992) 1146–1152.

[41]. R. Villarreal, P.L. Varghese, Appl. Opt. 44 (2005) 6786–6795.

[42]. M. Schenk, L. Leon, K. Moshammer, P. Oßwald, T. Zeuch, L. Seidel, F. Mauss, K. Kohse-Höinghaus, Combust. Flame 160 (2013) 487–503.

[43]. P. Oßwald, K. Kohse-Höinghaus, U. Struckmeier, T. Zeuch, L. Seidel, L. Leon, F. Mauss, Z. Phys. Chem. 225 (2011) 1029–1054.

[44]. A. Brockhinke, A. Bülter, J.C. Rolon, K. Kohse-Höinghaus, Appl. Phys. B 72 (2001) 491–496.

[45]. S.A. Skeen, H.A. Michelsen, K.R. Wilson, D.M. Popolan, A. Violi, N. Hansen, J. Aerosol Sci. 58 (2013) 86–102.

[46]. T.A. Cool, A. McIlroy, F. Qi, P.R. Westmoreland, L. Poisson, D.S. Peterka, M. Ahmed, Rev. Sci. Instrum. 76 (2005) 094102.

[47]. A. Bodi, P. Hemberger, D.L. Osborn, B. Sztaray, J. Phys. Chem. Lett. 4 (2013) 2948–2952.

[48]. P. Oßwald, P. Hemberger, T. Bierkandt, E. Akyildiz, M. Köhler, A. Bodi, T. Kasper, Rev. Sci. Instrum. 85 (2013) 025101.

[49]. D. Felsmann, K. Moshammer, J. Krüger, A. Lackner, A. Brockhinke, T. Kasper, T. Bierkandt, E. Akyildiz, N. Hansen, A. Lucassen, P. Oßwald, M. Köhler, G.A. Garcia, L. Nahon, P. Hemberger, A. Bodi, T. Gerber, K. Kohse-Höinghaus, presentation at the 35th International Symposium on Combustion, San Francisco, USA, August 3-8, 2014, and Proc. Combust. Inst. (2014), http://dx.doi.org/10.1016/j.proci.2014.05.151

[50]. G.A. Garcia, B.K. Cunha de Miranda, M. Tia, S. Daly, L. Nahon, Rev. Sci. Instrum. 84 (2013) 053112.

[51]. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9 (2012) 671–675.

[52]. A.D. Abid, J. Camacho, D.A. Sheen, H. Wang, Combust. Flame 156 (2009) 1862–1870.

[53]. C. Arcoumanis, C. Bae, R. Crookes, E. Kinoshita, Fuel 87 (2008) 1014–1030.

[54]. C. Togbé, L.-S. Tran, D. Liu, D. Felsmann, P. Oßwald, P.-A. Glaude, B. Sirjean, R. Fournet, F. Battin-Leclerc, K. Kohse-Höinghaus, Combust. Flame 161 (2014) 780–797.

[55]. Z. Zhu, D.K. Li, J. Liu, Y.J. Wei, S.H. Liu, Appl. Therm. Engr. 35 (2012) 9–14.

[56]. H.J. Curran, W.J. Pitz, C.K. Westbrook, P. Dagaut, J.-C. Boettner, M. Cathonnet, Int. J. Chem. Kinet. 30 (1998) 229–241.

[57]. X.L. Zheng, T.F. Lu, C.K. Law, C.K. Westbrook, H.J. Curran, Proc. Combust. Inst. 30 (2005) 1101–1109.

[58]. T. Wada, A. Sudholt, H. Pitsch, N. Peters, Combust. Theory Model. 17 (2013) 906–934.

[59]. H. Guo, W. Sun, F.M. Haas, T. Farouk, F.L. Dryer, Y. Ju, Proc. Combust. Inst. 34 (2013) 573–581.

[60]. K. Zhang, K. Moshammer, P. Oßwald, K. Kohse-Höinghaus, Proc. Combust. Inst. 34 (2013) 763–770.

[61]. F. Herrmann, B. Jochim, P. Oßwald, L. Cai, H. Pitsch, K. Kohse-Höinghaus, Combust. Flame 161 (2014) 384–397.

[62]. S.L. Fischer, F.L. Dryer, H.J. Curran, Int. J. Chem. Kinet. 32 (2000) 713–740.

[63]. H.J. Curran, S.L. Fischer, F.L. Dryer, Int. J. Chem. Kinet. 32 (2000) 741–759.

[64]. Z. Zhao, M. Chaos, F.L. Dryer, Int. J. Chem. Kinet. 40 (2008) 1–18.

[65]. W.K. Metcalfe, S. Burke, S. Ahmed, H.J. Curran, Int. J. Chem. Kinet. 45 (2013) 638–675.

[66]. D. Liu, J. Santner, C. Togbé, D. Felsmann, J. Koppmann, A. Lackner, X. Yang, X. Shen, Y. Ju, K. Kohse-Höinghaus, Combust. Flame 160 (2013) 2654–2668.

[67]. F. Herrmann, P. Oßwald, K. Kohse-Höinghaus, Proc. Combust. Inst. 34 (2013) 771–778.

[68]. B. Brumfield, W. Sun, Y. Ju, G. Wysocki, J. Phys. Chem. Lett. 4 (2013) 872–876.

[69]. P.A. Skovorodko, A.G. Tereshchenko, O.P. Korobeinichev, D.A. Knyazkov, A.G. Shmakov, Combust. Theory Model. 17 (2013) 1–24.

[70]. U. Struckmeier, P. Oßwald, T. Kasper, L. Böhling, M. Heusing, M. Köhler, A. Brockhinke, K. Kohse-Höinghaus, Z. Phys. Chem. 223 (2009) 503–537.

[71]. V. Gururajan, K. Kohse-Höinghaus, F. Egolfopoulos, presentation at the 35th International Symposium on Combustion, San Francisco, USA, August 3-8, 2014, and Proc. Combust. Inst. (2014), http://dx.doi.org/
10.1016/j.proci. 2014.06.046

[72]. W. Ren, A. Farooq, D. Davidson, R.K. Hanson, Appl. Phys. B 107 (2012) 849–860.

[73]. R.M. Spearrin, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Appl. Opt. 53 (2014) 1938–1946.

[74]. M.B. Sajid, E. Es-Sebbar, T. Javed, C. Fittschen, A. Farooq, Int. J. Chem. Kinet. 46 (2014) 275–284.

[75]. J. Koppmann, A. Lackner, P. Nau, A. Brockhinke, K. Kohse-Höinghaus, 8th U.S. National Combustion Meeting, Park City, Utah, May 19-22, 2013.

[76]. P. Nau, J. Koppmann, A. Lackner, A. Brockhinke, Appl. Phys. B (2014), submitted for publication.

[77]. D. Liu, C. Togbé, L.-S. Tran, D. Felsmann, P. Oßwald, P. Nau, J. Koppmann, A. Lackner, P.- A. Glaude,
B. Sirjean, R. Fournet, F. Battin-Leclerc, K. Kohse-Höinghaus, Combust. Flame 161 (2014), 748–765.

[78]. P. Nau, J. Koppmann, A. Lackner, A. Brockhinke, K. Kohse-Höinghaus, Appl. Phys. B (2014) submitted for publication.

[79]. D.G. Goodwin, CANTERA C++ User’s Guide, 2002, Chem.Vap. Depos. XVI and EuroCVD 14 (2003) 08.

[80]. HITRAN, http://www.cfa.harvard.edu/hitran/, 2008 and HITEMP, http://www.cfa.harvard. edu/hitemp/, 2010.

[81]. C.J. Danby, J.H.D. Eland, Int. J. Mass Spectrom. Ion Phys. 8 (1972) 153–161.

[82]. B. Brehm, J.H.D. Eland, R. Frey, A. Küstler, Int. J. Mass Spectrom Ion Phys. 12 (1973) 213–224.

[83]. T. Baer, Y. Li, Int. J. Mass Spectrom. 219 (2002) 381–389.

[84]. B. Sztáray, T. Baer, Rev. Sci. Instrum. 74 (2003) 3763–3768.

[85]. G.A. Garcia, H. Soldi-Lose, L. Nahon, Rev. Sci. Instrum. 80 (2009) 023102.

[86]. A. Bodi, M. Johnson, T. Gerber, Z. Gengeliczki, B. Sztáray, T. Baer, Rev. Sci. Instrum. 80 (2009) 034101.

[87]. X. Tang, X. Zhou, M. Niu, S. Liu, J. Sun, X. Shan, F. Liu, L. Sheng, Rev. Sci. Instrum. 80 (2009) 113101.

[88]. P. O'Keeffe, P. Bolognesi, M. Coreno, A. Moise, R. Richter, G. Cautero, L. Stebel, R. Sergo, L. Pravica,
Y. Ovcharenko, L. Avaldi, Rev. Sci. Instrum. 82 (2011) 033109.

[89]. A. Bodi, P. Hemberger, T. Gerber, B. Sztáray, Rev. Sci. Instrum. 83 (2012) 083105.

[90]. M. Steinbauer, P. Hemberger, I. Fischer, A. Bodi, ChemPhysChem 12 (2011) 1795–1797.

[91]. P. Hemberger, M. Steinbauer, M. Schneider, I. Fischer, M. Johnson, A. Bodi, T. Gerber, J. Phys. Chem. A 114 (2010) 4698–4703.

[92]. P. Hemberger, M. Lang, B. Noller, I. Fischer, C. Alcaraz, B.K. Cunha de Miranda, G.A. Garcia, H. Soldi-Lose,
J. Phys. Chem. A 115 (2011) 2225–2230.

[93]. G.A. Garcia, L. Nahon, I. Powis, Rev. Sci. Instrum. 75 (2004) 4989–4996.

[94]. NIST Webbook Chemistry, Ionization energetics data, compiled by S.G. Lias, H.M. Rosenstock, K. Draxl, B.W. Steiner, J.T. Herron, J.L. Holmes, R.D. Levin, J.F. Liebman, S.A. Kafafi, http://webbook.nist.gov/chemistry/

[95]. A.D. Baker, C. Baker, C.R. Brundle, D.W. Turner, Int. J. Mass Spectrom. Ion Phys. 1 (1968) 285–301.

[96]. F. Egolfopoulos, N. Hansen, Y. Ju, K. Kohse-Höinghaus, C.K. Law, F. Qi, Prog. Energy Combust. Sci. 43 (2014) 36–67.

[97]. B.S. Haynes, H. Gg. Wagner, Prog. Energy Combust. Sci. 7 (1981) 229–273.

[98]. A. D’Anna, Proc. Combust. Inst. 32 (2009) 593–613.

[99]. H. Wang, Proc. Combust. Inst. 33 (2011) 41–67.

[100]. H. Bockhorn, A. D’Anna, A.F. Sarofim, H. Wang (Eds.), Combustion Generated Fine Carbonaceous Particles, KIT Scientific Publishing, 2009.

[101]. C.S. McEnally, L.D. Pfefferle, B. Atakan, K. Kohse-Höinghaus, Prog. Energy Combust. Sci. 32 (2006) 247–294.

[102]. S.-H. Chung, A. Violi, Proc. Combust. Inst. 33 (2011) 693–700.

[103]. D. Chen, Z. Zainuddin, E. Yapp, J. Ackroyd, S. Mosbach, M. Kraft, Proc. Combust. Inst. 32 (2013) 1827–1835.

[104]. Y. Bouvier, C. Mihesan, M. Ziskind, E. Therssen, C. Focsa, J.F. Pauwels, P. Desgroux, Proc. Combust. Inst. 31 (2007) 841– 849.

[105]. A. Faccinetto, P. Desgroux, M. Ziskind, E. Therssen, C. Focsa, Combust. Flame 158 (2011) 227–239.

[106]. B. Apicella, A. Carpentieri, M. Alfè, R. Barbella, A. Tregrossi, P. Pucci, A. Ciajolo, Proc. Combust. Inst. 31 (2007) 547–553.

[107]. S.A. Skeen, B. Yang, H.A. Michelsen, J.A. Miller, A. Violi, N. Hansen, Proc. Combust. Inst. 34 (2013) 1067–1075.

[108]. J. Appel, H. Bockhorn, M. Frenklach, Combust. Flame 121 (2000) 122–136.

[109]. S. Stein, A. Farr, J. Phys. Chem. 89 (1985) 3714–3725.

[110]. C.K. Gaddam, R.L. Vander Wal, Combust. Flame 160 (2013) 2517–2528.

[111]. M. Alfè, B. Apicella, R. Barbella, J.-N. Rouzaud, A. Tregrossi, A. Ciajolo, Proc. Combust. Inst. 32 (2009) 697–704.

[112]. J.P. Cain, P.L. Gassman, H. Wang, A. Laskin, Phys. Chem. Chem. Phys. 12 (2010) 5206–5218.

Downloads

Published

2014-09-30

How to Cite

Krüger, J., Koppmann, J., Nau, P., Brockhinke, A., Schenk, M., Hansen, N., … Kohse-Höinghaus, K. (2014). From Precursors to Pollutants: Some Advances in Combustion Chemistry Diagnostics. Eurasian Chemico-Technological Journal, 16(2-3), 91–105. https://doi.org/10.18321/ectj174

Issue

Section

Articles