Quantification of the Local Heat Release Rate During Flame-Vortex Interactions at Different Lewis Numbers and Equivalence Ratios

Authors

  • J. A. Denev Karlsruhe Institute of Technology, Engler-Bunte-Institute; Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany
  • I. Naydenova Karlsruhe Institute of Technology, Engler-Bunte-Institute; Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany
  • H. Bockhorn Karlsruhe Institute of Technology, Engler-Bunte-Institute; Engler-Bunte-Ring 1, 76131 Karlsruhe, Germany

DOI:

https://doi.org/10.18321/ectj183

Keywords:

Lewis number effect, flame front curvature, tangential strain rate, premixed combustion, local extinction, DNS

Abstract

The present work aims at the detailed understanding of the local processes in premixed combustion of hydrogen, methane and propane flames at unsteady conditions. The methodology consists of the analysis of simulations of two-dimensional flame-vortex interactions as well as statistical data obtained from threedimensional Direct Numerical Simulations (DNS) of the flame front interacting with a set of vortexes. Special attention is given to the relationship between the Lewis number (Le) of the fuel and the flame front stretch in terms of both curvature and strain rate. A large single vortex bends the flame front thus creating both positive and negative curvatures, which in turn enhance the heat release rate in some locations of the flame front and decrease it in others. The resulting effect is called “polarisation effect”. The occurrence and the strength of the polarisation effect of curvature are tightly bound up with the Lewis number of the fuel. The polarisation effect is quantified by the ratio of maximum to minimum heat release rates along the flame front, which defines the Polarisation Effect Number (PEN). The more the Lewis number of a fuel deviates from unity, the stronger the polarisation effect is. Strong polarisation effects lead finally to local flame extinction. This is demonstrated for hydrogen flames with Le = 0.29 (lean) and Le = 2.2 (rich) as well as for artificially designed cases with Le = 0.1 and Le = 10.0. Therefore, flame extinction can occur for both thermodiffusively stable and unstable flames. It is shown that choosing an appropriate mixture of real fuels with different Lewis numbers, the homogeneity of the heat release rate along the flame front could be considerably enhanced. This relatively uniform heat release rate is not sensitive to curvature, which consequently decreases the occurrence of local extinction.

References

[1]. G.H. Markstein, Nonsteady flame propagation, AGARD Monograph No. 75, Pergamon Press, New York, 1964.

[2]. F.A. Williams. Combustion theory. Benjamin Cummings, Menlo park, CA, 1985.

[3]. S.M. Candel and T.J. Poinsot, Combust. Sci. and Tech. 70 (1990) 1–15.

[4]. R.S. Cant and E. Mastorakos, An introduction to turbulent reacting flows, Imperial College Press, 2008.

[5]. P. Clavin, Prog. Energy Combust. Sci. 11 (1985) 1–59.

[6]. P. Poinsot and D. Veynante, Theoretical and numerical combustion, Second edition, Edwards, 2005.

[7]. C.K. Law, D.L. Zhu, and G. Yu, Proc. Comb. Inst. 21 (1986) 1419–1426.

[8]. C.J. Sung, J.B. Liu and C.K. Law, Combust. Flame 106 (1996) 168–183.

[9]. C.K. Law, Proc. Comb. Inst. 22 (1988) 1381–1402.

[10]. J. Sato, Proc. Comb. Inst. 9 (1982) 1541–1548.

[11]. H.G. Im and J.H. Chen, Proc. Comb. Inst. 28 (2000) 1833-1840.

[12]. C. Schrödinger, C.O. Pashereit, and M. Oevermann, ICCFD7-3401, Hawaii, July 9-13, 2012.

[13]. H.G. Im, J.H. Chen and J.Y. Chen, Combust. Flame 118 (1999) 204–212.

[14]. M. Weiß, N. Zarzalis and R. Suntz, Combust. Flame 154 (2008) 671–691.

[15]. P. Clavin and J.C. Grana-Otero, J. Fluid Mech. 686 (2011) 187–217.

[16]. J.A. Denev, V. Vukadinovic, I. Naydenova, N. Zarzalis and H. Bockhorn, Proceedings of the European Combustion Meeting, Lund, 26-28th of June, publ. No: P1-69, 6p, 2013.

[17]. K.T. Aung, M.I. Hassan and G.M. Faeth, Combust. Flame 109 (1997) 1–24.

[18]. O.C. Kwon, and G. M. Faeth, Combust. Flame 124 (2001) 590–610.

[19]. M. Weiss, Untersuchungen von Flammenfrontstreckungseffekten auf die sphärische Flammenausbreitung laminarer und turbulenter Brennstoff/Luft-Gemische, Ph.D. Thesis, University of Karlsruhe, 2008, in German.

[20]. N. Peters, Turbulent combustion, Cambridge University Press, 2000.

[21]. D. Bradley, Proc. Combust. Inst. 24 (1992) 247–262.

[22]. J.B. Bell, M.S. Day, J.F. Grcar, and M.J. Lijewski, Commun. App. Math. Comput. Sci., 1, Mathematical Sciences Publishers, p. 29–52, 2006.

[23]. R. Borghi, in C. Casci (ed.), Recent advances in aerospace sciences, Plenum, New York, 1985, 117-138.

[24]. K.K. Kuo and R. Acharya, Fundamentals of turbulent and multiphase combustion, John Wiley and Sons, Inc., 2012.

[25]. A.M. Laverdant, and S.M. Candel, Combust. Sci. and Tech. 60 (1988) 79–96.

[26]. W.T. Ashurst and P.A. McMurtry, Combust. Sci. and Tech. 66 (1989) 17–37.

[27]. T. Echekki and J.H. Chen, Combust. Flame 118 (1999) 308–311.

[28]. T. Echekki and J.H. Chen, Combust. Flame 106 (1996) 184–202.

[29]. N. Peters, P. Terhoeven, J.H. Chen and T. Echekki, Proc. Comb. Inst. 27 (1998) 833–839.

[30]. J.B. Bell, R.K. Cheng, M.S. Day and I.G. Shepherd. Proc. Comb. Inst. 31 (2007) 1309–1317.

[31]. F. Dinkelacker, B. Manickam, and S.P.R. Muppala. Combust. Flame 158 (2011) 1742–1749.

[32]. A. Soika, F. Dinkelacker and A. Leipertz, Combust. Flame 132 (2003) 451–462.

[33]. J.A. Denev and H. Bockhorn, Accepted in Transactions of the High Performance Computing Center, Stuttgart (HLRS), Springer, (2014).

[34]. Y.B. Zel’dovich and D.A. Frank-Kamenteskii, Turbulent and Heterogeneous Combustion, MMI, Moscow, 1947 (in Russian).

[35]. D.C. Haworth and T.J. Poinsot, J. Fluid Mech., 244 (1992) 405–436.

[36]. D. Thevenin, F. Behrendt, U. Maas, B. Przywara and J. Warnatz, Computers and Fluids 25 (1996) 485–496.

[37]. J.A. Miller, R.E. Mitchell, M.D. Smooke and R.J. Kee, Proc. Comb. Inst. 19 (1982) 181–196.

[38]. R.W. Bilger, M.B. Esler and S.H. Starner, In: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames Lecture Notes in Physics Volume, (Ed.) M. D. Smooke, Springer Berlin Heidelberg,
Springer-Verlag, 384, 1991, p. 86.

[39]. M.D. Smooke and V. Giovangigli, In: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames Lecture Notes in Physics Volume, (Ed.) M. D. Smooke, Springer Berlin Heidelberg,
Springer-Verlag, 384, 1991, p.1.

[40]. M.D. Smooke and V. Giovangigli, In: Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane-Air Flames Lecture Notes in Physics Volume, (Ed.) M. D. Smooke, Springer Berlin Heidelberg,
Springer-Verlag, 384, 1991, p.29.

[41]. C. Jimenez, B. Cuenot, T. Poinsot, and Haworth, D., Numerical Combust. Flame 128 (1-2) (2002) 1–21.

[42]. D.C. Haworth, R.J. Blint, B. Cuenot and T.J. Poinsot, Combust. Flame 121 (4) (2000) 395–417.

[43]. D.L. Baulch, C.T. Bowman, C.J. Cobos, R.A. Cox, Th. Just, J.A. Kerr, M.J. Pilling, D. Stocker, J. Troe, W. Tsang, R.W. Walker and J. Warnatz, J. Phys. Chem. Ref. Data. 34 (2005) 757–1397.

[44]. C.I. Heghes, C1-C4 Hydrocarbon oxidation mechanism, PhD thesis, Ruprecht-Karls-Heidelberg University, Heidelberg, Germany, 2006.

[45]. B. Ranganath and T. Echekki, Int. J. Heat Mass Transfer 49 (25-26) (2006) 5075–5080.

[46]. L.K. Tseng, M. Ismail and G. Faeth, Combust. Flame 95 (1993) 410-426.

[47]. CHEMKIN-PRO Release 15 113, 2012.

[48]. J.A. Denev and H. Bockhorn, in Transactions of the High Performance Computing Center, Stuttgart (HLRS), Springer, (2013) p. 245–257.

[49]. J.H. Chen and H.G. Im, Proc. Comb. Inst. 28 (2000) 211–218.

[50]. C.K. Law, C.J. Sung, G. Yu and R.L. Axelbaum, Combust. Flame 98 (1995) 139–154.

[51]. J.A. Denev and H. Bockhorn, In 26. Deutscher Flammentag, Verbrennung und Feuerungen, VDI-Berichte 2161, VDI, Duisburg-Essen, 11.-12. September, pp. 601-612, 2013.

[52]. Z. Chen, M. Burke, and Y. Ju, Proc. Comb. Inst. 32 (2009) 1253–1260.

Downloads

Published

2014-09-30

How to Cite

Denev, J. A., Naydenova, I., & Bockhorn, H. (2014). Quantification of the Local Heat Release Rate During Flame-Vortex Interactions at Different Lewis Numbers and Equivalence Ratios. Eurasian Chemico-Technological Journal, 16(2-3), 195–207. https://doi.org/10.18321/ectj183

Issue

Section

Articles