Micro and Nano Scale Phenomena of Aluminum Agglomeration During Solid Propellant Combustion

  • A. Gany Faculty of Aerospace Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
Keywords: aluminized propellants, agglomeration, nano-aluminum, nickel coating

Abstract

Combustion of aluminized solid propellants exhibits phenomena associated with accumulation, agglomeration, ignition, and combustion of micro and nano-size aluminum particles. In general, agglomeration is an undesirable phenomenon, as it turns small particles into relatively large agglomerates, each containing many original particles, resulting in long combustion times which may lead to incomplete reaction, reduced jet momentum, and enhanced slag formation which adds parasite mass and may damage the motor insulation. This article presents a physical mechanism explaining the agglomeration process, revealing that small particles tend to agglomerate more than large particles. In addition, it suggests ways to reduce agglomeration of the aluminum particles via nano-coatings generating reactive heating and promoting ignition.

References

[1]. J.E. Crump, J.L. Prentice, and K.J. Kraeutle, Combust. Sci. Technol. 1 (1969) 205–223.

[2]. A. Gany, L.H. Caveny, and M. Summerfi eld, AIAA Journal 16 (7) (1978) 736–739.

[3]. E.W. Price, “Combustion of Metallized Propellants”, in K.K. Kuo and M. Summerfi eld, Eds., Fundamentals of Solid Propellant Combustion, Progress is Astronautics and Aeronautics, Vol. 90, AIAA, 1984, pp. 479–513.

[4]. M.W. Beckstead, “A Summery of Aluminum Combustion”, Presented at the RTO/VKI Special Course “Internal Aerodynamics in Solid Rocket Propulsion”, Published in RTO-EN-023, 2002.

[5]. S. Boraas, Journal of Spacecraft and Rockets 21 (1) (1984) 47–54.

[6]. M. Salita, J. Propul. Power 11 (1) (1995) 10–23.

[7]. M.W. Beckstead, “An Overview of Aluminum Agglomeration Modeling”, 50th Israel Annual Conference on Aerospace Sciences, Tel Aviv, 2010.

[8]. A. Gany, and L.H. Caveny, Proc. 17th Symp. (Intern.) Combust., Combust. Inst. 1978, pp. 1453–1461.

[9]. T. Liu, J. Propul. Power 21 (5) (2005) 797–806.

[10]. M.W. Beckstead, “A Model for Solid Propellant Combustion”, 14th JANNAF Combustion Meeting, CPIA Pub. 292, Vol. 1, 1977, pp. 281–306.

[11]. N.S. Cohen, AIAA Journal 21 (5) (1983) 720–725.

[12]. G.M. Knott, T.L. Jackson, and J. Buckmaster, AIAA Journal 39 (4) (2001) 678–686.

[13]. T.L. Jackson, F. Najjar, and J. Buckmaster, J. Propul. Power 21 (5) (2005) 925–936.

[14]. X. Wang, T.L. Jackson, and J. Buckmaster, Proc. Combust. Inst. 31 (2007) 2055–2062.

[15]. A. Dokhan, E.W. Price, J.M. Seitzman, and R.K. Sigman, Proc. Combust. Inst. 29 (2002) 2939–2945.

[16]. M.M. Munch, C.L. Yeh, K.K. Kuo, “Propellant Burning rate Enhancement and Thermal Behavior of Ultra-fi ne Aluminum Powders (Alex)”, Energetic Materials: Production, Processing and Characterization, Proc. 29th Int. Annual Conf. of ICT, 30-1-15, 1988.

[17]. V.N. Simonenko, V.E. Zarko, “Comparative Study of the Combustion Behavior of Fine Aluminum”,
Energetic Materials, Proc. 30th Int. Annual Conf. of ICT, paper 30, 1999.

[18]. O.G. Glotov, V.E. Zarko, M.W. Beckstead, “Agglomerate and Oxide Particles Generated in Combustion of Alex Containing Solid Propellants”, Energetic Materials. Analysis, Diagnostics, and Testing, Proc. 31st Int. Annual Conf. of ICT, paper 30, 2000.

[19]. L.T. De Luca, L. Galfetti, F. Severini, L. Meda, G. Marra, A.B. Vorozhtsov, V.S. Sedoi, and V.A. Babuk, “Burning of Nano-Aluminized Composite Rocket Propellants”, Combustion, Explosion, and Shock Waves 41 (6) (2005) 680–692.

[20]. L. Galfetti, L.T. De Luca, F. Severini, G. Colombo, L. Meda, G. Marra, Aerospace Science and Technology 11 (2007) 26–32.

[21]. V. Rosenband, and A. Gany. International Journal of Energetic Materials and Chemical Propulsion 6
(2) (2007) 143–152.

[22]. V. Rosenband, and A. Gany, International Journal of Energetic Materials and Chemical Propulsion 8
(4) (2009) 291–307.

[23]. V. Rosenband, and A. Gany. International Journal of Energetic Materials and Chemical Propulsion 10
(1) (2011) 19–32.

[24]. E. Shafi rovich, P.E. Bocanegra, C. Chanveau, I. Gokalp, U. Goldshleger, V. Rosenband, and A. Gany, Proc. Combust. Inst. 30 (2005) 2055–2062.

[25]. T.A. Andrzejak, E. Shafi rovich, and A. Varma, Combust. Flame 150 (1-2) (2007) 60–70.

[26]. T.A. Andrzejak, E. Shafi rovich, and A. Varma, J. Propul. Power 24 (4) (2008) 805–813.

[27]. A. Hahma, A. Gany, and K. Palovuori, Combust. Flame 145 (3) (2006) 464–480.

[28]. Y. Yavor, V. Rosenband, and A. Gany, International Journal of Energetic Materials and Chemical Propulsion 9 (6) (2010) 477–492.

[29]. Y. Yavor, and A. Gany, “Effect of Nickel Coating on Aluminum Combustion and Agglomeration in Solid Propellants”, AIAA Paper 2008-5255, 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, USA, 2008.

[30]. Y. Yavor, A. Gany, and M.W. Beckstead, Propellants, Explos., Pyrotech. 39 (2014) 108–116.
Published
2016-09-07
How to Cite
[1]
A. Gany, “Micro and Nano Scale Phenomena of Aluminum Agglomeration During Solid Propellant Combustion”, Eurasian Chem. Tech. J., vol. 18, no. 3, pp. 161-170, Sep. 2016.
Section
Articles