Self-Propagating High-Temperature Synthesis of Chromium Substituted Lanthanide – Barium – Copper Oxides, LnBa2Cu3-xCrxO7-y (Ln = Y; La; Nd; Sm and Yb)

Authors

  • Maxim V. Kuznetsov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences, p/o Chernogolovka, Moscow Region, 142432 Russia
  • Ivan P. Parkin Department of Chemistry, Christopher Ingold Laboratory, University College London, 20 Gordon Street, London, WC1H 0AJ UK
  • Yuri G. Morozov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences, p/o Chernogolovka, Moscow Region, 142432 Russia
  • Alexander G. Merzhanov Institute of Structural Macrokinetics and Materials Science Russian Academy of Sciences, p/o Chernogolovka, Moscow Region, 142432 Russia

DOI:

https://doi.org/10.18321/ectj521

Abstract

A series of MBa2Cu3-xCrxO7-y (M = Y; La; Nd; Sm and Yb; x = 0, 0.05, 0.15, 0.25) materials were synthesized in air by self-propagating high-temperature synthesis (SHS) involving reaction of stoichiometric mixtures of rare-earth metal (III) oxide, barium peroxide, copper metal, chromium (III) oxide and sodium perchlorate. All the SHS processes were followed by sintering in oxygen at 950 °C for 2 h. The products were characterized by SEM, X-ray powder diffraction, UV, superconductive transition temperatures (Tc) and magnetic susceptibility (χ) measurements. X-ray diffraction data showed that single phase orthorhombic (or tetragonal for M = Nd) materials were produced. All series of materials showed a systematic increase in lattice parameters and unit cell volume with chromium content (M = Y: x = 0, V = 174.25 Å3; x = 0.25, V = 175.10 Å3). Thermal stability of all the SHS prepared materials increased with x. Oxygen content of all the samples increased with x, but did not exceed 7.0. Superconductivity transition temperature decreased with chromium substitution in all systems (98-77 K). Magnetic susceptibility decreased with chromium substitution.

References

(1). Xiao G., Streitz F.H. and Gavrin A., Phys. Rev. B., 35:8782 (1987).

(2). Ponomarev V.I., Peresada A.G., Nersesyan M.D. and Merzhanov A.G., Superconductivity: physics, chemistry, technics, 3:2813 (1990).

(3). Kuznetsov M.V., Peresada A.G., Morozov Yu.G., Nersesyan M.D. and Ponomarev V. I., Inorg.Mater., 30:89 (1994).

(4). Den T. and Cobayashi T., Physica C, 196:141 (1992).

(5). Andresen P. H., Fjellvag H., Karen P. and Kjekshus A., Acta Chemica Scandinavica, 45: 698 (1991).

(6). Miura N., Suzuta H., Teraoka Y. and Yamazoe N., Jap.J.Appl.Phys., 27:L337 (1988).

(7). Khainovskii N.G., Pavlyukhin Y.T. and Boldyrev V.V., Inorg.Mater., 28:648 (1992).

(8). Abrikosov A.A. and Gorkov I.P., Phys.Rev.B, 49:12337 (1994).

(9). Merzhanov A.G., Borovinskaya I.P., Nersesyan M.D., Peresada A.G. and Morozov Yu. G., Dokladi Akademii Nauk SSSR, 311:96 (1990).

(10). Umardevi Muralindharan P., Phys. Status Solidi A, 123:K39 (1991).

(11). Umardevi Muralindharan P. and Ramamohan T. R., Phys. Status Solidi A, 130:153 (1992).

(12). Umardevi Muralindharan P. and Damodaran A. D., Jap. J. Appl. Phys., 30:280 (1991).

(13). Kasperczyk J., Piasecki M. and Bak Z., Physica C, 153-155:215 (1988).

(14). Huber J. G., Liverman W. J. and Xu Y., Phys. Rev. B, 41:8757 (1990).

(15). Strobel P., Paulsen C. and Tholence J.L., Sol.St.Comm., 65:585 (1988).

(16). Semenovskaya S., Zhy Y. and Suenaga M., Phys. Rev B, 47:12182 (1993).

(17). Peregudov A.N., Peresada A.G., Karpov L.G. and Peregudova T.V., Chem.Phys.Repts, 11:289 (1992).

(18). Lebrat J.P. and Varma A., Combust. Sci.Technol., 88:177 (1993).

(19). Kale G. M., J.Mater.Sci., 30:1420 (1995).

Downloads

Published

2002-03-20

How to Cite

Kuznetsov, M. V., Parkin, I. P., Morozov, Y. G., & Merzhanov, A. G. (2002). Self-Propagating High-Temperature Synthesis of Chromium Substituted Lanthanide – Barium – Copper Oxides, LnBa2Cu3-xCrxO7-y (Ln = Y; La; Nd; Sm and Yb). Eurasian Chemico-Technological Journal, 4(2), 73–86. https://doi.org/10.18321/ectj521

Issue

Section

Articles