Synthesis of BaTiO3-TiO2-Graphene Nanocomposites and Kinetics Studies on their Photocatalytic Activity
DOI:
https://doi.org/10.18321/ectj271Abstract
BaTiO3-TiO2 nanoparticles were fabricated by a wet-chemical method using barium chloride dihydrate (BaCl2·2H2O), titanium dioxide (TiO2), and oxalic acid (C2H2O4) as precursors. BaTiO3-TiO2-graphene nanocomposites were obtained by heating the BaTiO3-TiO2 nanoparticles with graphene in an electric furnace at 700 °C for 2 h. X-ray diffraction analysis revealed that the resulting products were BaTiO3-TiO2-graphene nanocomposites. Scanning electron microscopy revealed the morphology of the nanocomposites. UV-vis spectrophotometry was used to analyze the photocatalytic degradation of several organic dyes using the BaTiO3-TiO2-graphene nanocomposites as a photocatalyst under ultraviolet irradiation at 254 nm.
References
[2]. S. Sen, R.N.P. Choudhary, P. Pramanik, Mater. Lett. 58 (2004) 3486–3490.
[3]. S. Yoon, J. Dornseiffer, T. Schneller, D. Hennings, S. Iwaya, C. Pithan, R. Waser, J. Eur. Ceram. Soc. 30 (2010) 561–567.
[4]. Y. Hotta, K. Tsunekawa, T. Isobe, K. Sato, K. Watari, Mat. Sci. Eng. A-Struct 75 (2008) 12–16.
[5]. X. H. Ren, Y.K. Cheng, J. Magn. Magn. Mater. 393 (2015) 293–296.
[6]. M. Saleem, J.S. Song, S.J. Jeong, M.S. Kim, S. Yoon, I.S. Kim, Mater. Res. Bull. 64 (2015) 380–384.
[7]. H. Hsiang, Y.L. Chang, J.S. Fang, F.S. Yen, J. Alloy. Compd. 509 (2011) 7632–7638.
[8]. X. Yang, Z. Ren, G. Xu, C. Chao, S. Jiang, S. Deng, G. Shen, X. Wei, G. Han, Ceram. Int. 40 (2014) 9663–9670.
[9]. X. Wei, G. Xu, Z. Ren, Y. Wang, G. Shen, G. Han, J. Am. Ceram. Soc. 91 (2008) 315–318.
[10]. M.T. Buscaglia, C. Harnagea, M. Dapiaggi, V. Buscaglia, A. Pignolet, P. Nanni, Chem. Mater. 21 (2009) 5058–5065.
[11]. M. Saleem, I.S. Kim, J.S. Song, S.J. Jeong, M.S.Kim, S. Yoon, Ceram. Int. 40 (2014) 7329–7335.
[12]. A. Testino, V. Buscaglia, M.T. Buscaglia, M. Viviani, P. Nanni, Chem. Mater. 17 (2005) 5346–5356.
[13]. N. Maso, H. Beltran, E. Cordoncillo, A.A. Flores, P. Escribano, D.C. Sinclair, J. Mater. Chem. 16 (2006) 3114–3119.
[14]. C. Bi, M. Zhu, Q. Zhang, Y. Li, H. Wang, Mater. Chem. Phys. 126 (2011) 596–601.
[15]. S.H. Jhung, J.H. Lee, J.W. Yoon, Y.K. Hwang, J.S. Hwang, S.E. Park, Mater. Lett. 58 (2004) 3161–3165.
[16]. S. Su, R. Zuo, D. Lv, J. Fu, Powder Technol. 217 (2012) 11–15.
[17]. U. Manzoor, D.K. Kim, J. Mater. Sci. Technol. 23 (2007) 655–658.
[18]. V.P. Pavlovic, B.D. Stojanovic, V.B. Pavlovic, Z.M. Stanojevic, Lj. Zivkovic, M.M. Ristic, Sci. Sinter. 40 (2008) 21–26.
[19]. H. Xu, M. Zeng, Asian J. Chem. 27 (2015) 425–428.
[20]. V. Swaminathan, S.S. Pramana, T.J. White, L. Chen, R. Chukka, R.V. Ramanujan, ACS Appl. Mater. Inter. 2 (2010) 3037–3042.
[21]. S.Z. Kang, L. Chen, X. Li, J. Mu, Appl. Surf. Sci. 258 (2012) 6029–6033.
[22]. Z. Li, Y. Teng, L. Xing, N. Zhang, Z. Zhang, Mater. Res. Bull. 50 (2014) 68–72.
[23]. M.A. Behnajady, N. Modirshahla, R. Hamzavi, J. Hazard. Mater.133 (2006) 226–232.
[24]. R. Li, Y. Jia, N. Bu, J. Wu, Q. Zhen, J. Alloy. Compd. 643 (2015) 88–93.
[25]. M.C. Liu, L.Z. Wang, G.Q. Lu, X.D. Yao, L.J. Guo, Energy Environ. Sci. 4 (2011) 1372–1378.
[26]. R. Li, Q. Li, L. Zong, X. Wang, J. Yang, Electrochim. Acta 91 (2013) 30–35.
[27]. L.Y. Lin, D.E. Kim, W.K. Kim, S.C. Jun, Surf. Coat. Tech. 205 (2011) 4864–4869.
[28]. Z. Mansurov, F. Sultanov, S.S. Pei, S. C. Chang, S. Xing, F. Robles-Hernandez, Y.W. Chi, K.P. Huang, Microwave Plasma Enhanced CVD GrapheneBased Aerogels: Synthesis and Study. Proc. Annual World Conf. Carbon (Carbon-2015), Dresden, Germany, p.232.
[29]. F.R. Sultanov, S.S. Pei, M. Auyelkhankyzy, G. Smagulova, B.T. Lesbayev, Z.A. Mansurov, Eurasian Chemico-Technological Journal. 16 (2014) 265–269.
[30]. Z.D. Meng, L. Zhu, T. Ghosh, C.Y. Park, K. Ullah, V. Nikam, W.C. Oh, B. Kor. Chem. Soc. 33 (2012) 3761–3766.
[31]. R. Sengodan, B.C. Shekar, S. Sathish, Optik 125 (2014) 4819–4824.
[32]. W. Li, Z. Xu, R. Chu, P. Fu, J. Hao, J. Alloy. Compd. 482 (2009) 137–140.
[33]. E. Chavez, S. Fuentes, R. A. Zarate, L. P. Campos, J. Mol. Struct. 984 (2010) 131–136.
[34]. W. Wang, L. Cao, W. Liu, G. Su, W. Zhang, Ceram. Int. 39 (2013) 7127–7134.
[35]. G. Williams, B. Seger, P.V. Kamat, ACS Nano 2 (2008) 1487–1491.
[36]. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10 (2010) 577–583.
[37]. X.P. Lin, J.C. Xing, W.D. Wang, Z.C. Shan, F.F. Xu, F.Q. Huang, J. Phys. Chem. C 111 (2007) 18288–18293.
[38]. Q.Y. Li, R.Li, L.L. Zong, J.H. He, X.D. Wang, J.J. Yang, Int. J. Hydrogen Energ. 38 (2013) 12977–12983.
[39]. K. Dai, G. Dawson, S. Yang, Z. Chen, L. Lu, Chem. Eng. J. 191 (2012) 571–578.
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.