Synthesis of BaTiO3-TiO2-Graphene Nanocomposites and Kinetics Studies on their Photocatalytic Activity

  • J. Li Department of Convergence Science, Graduate School, Sahmyook University, Seoul 139-742, South Korea
  • J. W. Ko Department of Convergence Science, Graduate School, Sahmyook University, Seoul 139-742, South Korea
  • W. B. Ko Department of Convergence Science, Graduate School, Sahmyook University, Seoul 139-742, South Korea

Abstract

BaTiO3-TiO2 nanoparticles were fabricated by a wet-chemical method using barium chloride dihydrate  (BaCl2·2H2O), titanium dioxide (TiO2), and oxalic acid (C2H2O4) as precursors. BaTiO3-TiO2-graphene nanocomposites were obtained by heating the BaTiO3-TiO2 nanoparticles with graphene in an electric furnace at 700 °C for 2 h. X-ray diffraction analysis revealed that the resulting products were BaTiO3-TiO2-graphene nanocomposites. Scanning electron microscopy revealed the morphology of the nanocomposites. UV-vis spectrophotometry was used to analyze the photocatalytic degradation of several organic dyes using the BaTiO3-TiO2-graphene nanocomposites as a photocatalyst under ultraviolet irradiation at 254 nm.

References

[1]. M.G. Lines, J. Alloy. Compd. 449 (2008) 242–245.

[2]. S. Sen, R.N.P. Choudhary, P. Pramanik, Mater. Lett. 58 (2004) 3486–3490.

[3]. S. Yoon, J. Dornseiffer, T. Schneller, D. Hennings, S. Iwaya, C. Pithan, R. Waser, J. Eur. Ceram. Soc. 30 (2010) 561–567.

[4]. Y. Hotta, K. Tsunekawa, T. Isobe, K. Sato, K. Watari, Mat. Sci. Eng. A-Struct 75 (2008) 12–16.

[5]. X. H. Ren, Y.K. Cheng, J. Magn. Magn. Mater. 393 (2015) 293–296.

[6]. M. Saleem, J.S. Song, S.J. Jeong, M.S. Kim, S. Yoon, I.S. Kim, Mater. Res. Bull. 64 (2015) 380–384.

[7]. H. Hsiang, Y.L. Chang, J.S. Fang, F.S. Yen, J. Alloy. Compd. 509 (2011) 7632–7638.

[8]. X. Yang, Z. Ren, G. Xu, C. Chao, S. Jiang, S. Deng, G. Shen, X. Wei, G. Han, Ceram. Int. 40 (2014) 9663–9670.

[9]. X. Wei, G. Xu, Z. Ren, Y. Wang, G. Shen, G. Han, J. Am. Ceram. Soc. 91 (2008) 315–318.

[10]. M.T. Buscaglia, C. Harnagea, M. Dapiaggi, V. Buscaglia, A. Pignolet, P. Nanni, Chem. Mater. 21 (2009) 5058–5065.

[11]. M. Saleem, I.S. Kim, J.S. Song, S.J. Jeong, M.S.Kim, S. Yoon, Ceram. Int. 40 (2014) 7329–7335.

[12]. A. Testino, V. Buscaglia, M.T. Buscaglia, M. Viviani, P. Nanni, Chem. Mater. 17 (2005) 5346–5356.

[13]. N. Maso, H. Beltran, E. Cordoncillo, A.A. Flores, P. Escribano, D.C. Sinclair, J. Mater. Chem. 16 (2006) 3114–3119.

[14]. C. Bi, M. Zhu, Q. Zhang, Y. Li, H. Wang, Mater. Chem. Phys. 126 (2011) 596–601.

[15]. S.H. Jhung, J.H. Lee, J.W. Yoon, Y.K. Hwang, J.S. Hwang, S.E. Park, Mater. Lett. 58 (2004) 3161–3165.

[16]. S. Su, R. Zuo, D. Lv, J. Fu, Powder Technol. 217 (2012) 11–15.

[17]. U. Manzoor, D.K. Kim, J. Mater. Sci. Technol. 23 (2007) 655–658.

[18]. V.P. Pavlovic, B.D. Stojanovic, V.B. Pavlovic, Z.M. Stanojevic, Lj. Zivkovic, M.M. Ristic, Sci. Sinter. 40 (2008) 21–26.

[19]. H. Xu, M. Zeng, Asian J. Chem. 27 (2015) 425–428.

[20]. V. Swaminathan, S.S. Pramana, T.J. White, L. Chen, R. Chukka, R.V. Ramanujan, ACS Appl. Mater. Inter. 2 (2010) 3037–3042.

[21]. S.Z. Kang, L. Chen, X. Li, J. Mu, Appl. Surf. Sci. 258 (2012) 6029–6033.

[22]. Z. Li, Y. Teng, L. Xing, N. Zhang, Z. Zhang, Mater. Res. Bull. 50 (2014) 68–72.

[23]. M.A. Behnajady, N. Modirshahla, R. Hamzavi, J. Hazard. Mater.133 (2006) 226–232.

[24]. R. Li, Y. Jia, N. Bu, J. Wu, Q. Zhen, J. Alloy. Compd. 643 (2015) 88–93.

[25]. M.C. Liu, L.Z. Wang, G.Q. Lu, X.D. Yao, L.J. Guo, Energy Environ. Sci. 4 (2011) 1372–1378.

[26]. R. Li, Q. Li, L. Zong, X. Wang, J. Yang, Electrochim. Acta 91 (2013) 30–35.

[27]. L.Y. Lin, D.E. Kim, W.K. Kim, S.C. Jun, Surf. Coat. Tech. 205 (2011) 4864–4869.

[28]. Z. Mansurov, F. Sultanov, S.S. Pei, S. C. Chang, S. Xing, F. Robles-Hernandez, Y.W. Chi, K.P. Huang, Microwave Plasma Enhanced CVD GrapheneBased Aerogels: Synthesis and Study. Proc. Annual World Conf. Carbon (Carbon-2015), Dresden, Germany, p.232.

[29]. F.R. Sultanov, S.S. Pei, M. Auyelkhankyzy, G. Smagulova, B.T. Lesbayev, Z.A. Mansurov, Eurasian Chemico-Technological Journal. 16 (2014) 265–269.

[30]. Z.D. Meng, L. Zhu, T. Ghosh, C.Y. Park, K. Ullah, V. Nikam, W.C. Oh, B. Kor. Chem. Soc. 33 (2012) 3761–3766.

[31]. R. Sengodan, B.C. Shekar, S. Sathish, Optik 125 (2014) 4819–4824.

[32]. W. Li, Z. Xu, R. Chu, P. Fu, J. Hao, J. Alloy. Compd. 482 (2009) 137–140.

[33]. E. Chavez, S. Fuentes, R. A. Zarate, L. P. Campos, J. Mol. Struct. 984 (2010) 131–136.

[34]. W. Wang, L. Cao, W. Liu, G. Su, W. Zhang, Ceram. Int. 39 (2013) 7127–7134.

[35]. G. Williams, B. Seger, P.V. Kamat, ACS Nano 2 (2008) 1487–1491.

[36]. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10 (2010) 577–583.

[37]. X.P. Lin, J.C. Xing, W.D. Wang, Z.C. Shan, F.F. Xu, F.Q. Huang, J. Phys. Chem. C 111 (2007) 18288–18293.

[38]. Q.Y. Li, R.Li, L.L. Zong, J.H. He, X.D. Wang, J.J. Yang, Int. J. Hydrogen Energ. 38 (2013) 12977–12983.

[39]. K. Dai, G. Dawson, S. Yang, Z. Chen, L. Lu, Chem. Eng. J. 191 (2012) 571–578.
Published
2015-11-20
How to Cite
[1]
J. Li, J. Ko, and W. Ko, “Synthesis of BaTiO3-TiO2-Graphene Nanocomposites and Kinetics Studies on their Photocatalytic Activity”, Eurasian Chem. Tech. J., vol. 17, no. 4, pp. 281-286, Nov. 2015.
Section
Articles