Doped and Decorated Carbon Nanomaterials

  • J. Matos Technological Development Unit, University of Concepción, Av. Coordillera 2634, Coronel, Chile
  • S. A. Filatov A.V. Luikov Heat and Mass Transfer Institute, 15, P. Brovka Str., 220072 Minsk, Belarus
  • G. S. Ahremkova A.V. Luikov Heat and Mass Transfer Institute, 15, P. Brovka Str., 220072 Minsk, Belarus
  • D. V. Solovei A.V. Luikov Heat and Mass Transfer Institute, 15, P. Brovka Str., 220072 Minsk, Belarus
  • M. N. Dolgikh A.V. Luikov Heat and Mass Transfer Institute, 15, P. Brovka Str., 220072 Minsk, Belarus
  • G. S. Kuczynski A.V. Luikov Heat and Mass Transfer Institute, 15, P. Brovka Str., 220072 Minsk, Belarus
  • E. V. Batirev A.V. Luikov Heat and Mass Transfer Institute, 15, P. Brovka Str., 220072 Minsk, Belarus
Keywords: doped carbon, decorated materials, plasma discharge, magnetron sputtering, chemical vapor deposition

Abstract

This work shows the preliminary results concerning to the synthesis or modification of carbon-based nanomaterials by plasma discharge, magnetron sputtering, and chemical vapor deposition methodologies. As a first approach to show the potential of these techniques, scanning electron microscopy analysis was performed in order to verify morphological changes and to proof that it is possible to design the morphology of doped and decorated carbon nanomaterials. In spite of none further characterization was performed, from the discussion of results in literature, it can be suggest that these methods would permit to design novel carbon-based nanomaterials for the energy production and storage, catalytic and photocatalytic processes related with environment and green chemistry applications.

References

[1]. A.J. Appleby. J. Power Sources 58 (1996) 153–176.

[2]. S. Gamburzev, A.J. Appleby. J. Power Sources 107 (2002) 5–12.

[3]. J. Matos, A. Borodzinski, A. Mikolajczuk Zychora, P. Kedzierzawski, B. Mierzwa, K. Juchniewicz, M. Mazurkiewicz, J.C. Hernández-Garrido. Appl. Catal. B: Environ. 163 (2015) 167–178.

[4]. H. Hwang, T. Yeo, Y. Cho, D. Shin, W. Choi. J. Vis. Exp. (98), e52818, doi:10.3791/52818 (2015).

[5]. A. Arvesen, I.B. Hauan, B.M. Bolsøy, E.G. Hertwich. Appl. Energy 157 (2015) 144–151.

[6]. C.-T. Hsieh, D.-Y. Tzou, W.-Y. Lee, J.-P. Hsu. J. Alloys & Compounds 660 (2016) 99–107.

[7]. L.-B. Xing, K. Xi, Q. Li, Z. Su, C. Lai, X. Zhao, R.V. Kumar. J. Power Sources 303 (2016) 22–28.

[8]. R. Olivé-Monllau, C.S. Martínez-Cisneros, J. Bartrolí, M. Baeza, F. Céspedes. Sens. Actuat. B:Chem. 151 (2011) 416–422.

[9]. M. Takaoka, T. Aso, K. Sawa. A commutation performance and wear of carbon-fiber brush in gasoline. Electrical Contacts. Proc. Annual Holm Conf. Electrical Contacts (2001) 44–49.

[10]. F. Hao, P.B. Dong, Q. Luo, J. Li, J. Lou, H. Lin. Energy&Environ. Science 7 (2013) 2003–2019.

[11]. C.H. Lim, A.G. Kannan, H. –W. Lee, D.K. Kim. J. Mater. Chem. A. 1 (2013) 6183–6190.

[12]. J. Smithyman, Q.H. Do, C. Zeng, Z. Liang. J. Power Sources 277 (2015) 59–63.

[13]. R.J. Warzoha, R.M. Weigand, A.S. Fleischer. Appl. Energy 137 (2015) 716–725.

[14]. C.C. Li, H. Yu, Q. Yan, H.H. Hng. J. Power Sources 274 (2015) 310–317.

[15]. V. Fierro, V. Torné-Fernández, A. Celzard. Microp. Mesop. Mater. 92 (2006) 243–250.

[16]. L. Yang, Z. Shi, W. Yang. Electrochim. Acta 153 (2015) 76–82.

[17]. N. Bouts, A.A. El Mel, B. Angleraud, P.Y. Tessier. Carbon 83 (2015) 250–261.

[18]. X. Xu, G. Wang, H. Wang. Chem. Eng. J. 266 (2015) 222–232.

[19]. S.A. Zhdanok, I.S. Krylov, M.A. Silenkov, S.A. Filatov, S.V. Shushkov. J. Enginee. Phys. Thermophysics 84 (2011) 540–545.

[20]. S.A Filatov, J. Matos Lale, G.S. Ahremkova, D.V. Solovei. M.N. Dolgikh, G.S. Kuczynski, E.V. Batirev. Doped and decorated carbon nanomaterials for accumulation of energy. Proc. VII Intern. Conf. “Fullerenes and Nanostructures in Condensed Matter, 2013, Minsk, Belarus.

[21]. D.L. Sun, F. Wang, R.Y. Hong, C.R. Xie. Diamond and Related Materials 61 (2016) 21–31.

[22]. V. Senthilkumar, F.B. Kadumudi, N.T. Ho, J.-W. Kim, S. Park, J-S. Bae, W.M. Choi, S. Cho, Y.S. Kim. J. Power Sources 303 (2016) 363–371.

[23]. J. Matos, J. Laine. J. Mater. Sci. Letters 17 (1998) 649–651.

[24]. J. Matos, M. Labady, A. Albornoz, J. Laine, J.L. Brito. J. Molec. Catal. A: Chemical 228 (2005) 189–194.

[25]. J. Matos, T. Dudo, C.P. Landee, P. Silva, M.M. Turnbull. The Open Mater. Sci. Journal 3 (2009) 28–32.
Published
2015-11-20
How to Cite
[1]
J. Matos, “Doped and Decorated Carbon Nanomaterials”, Eurasian Chem. Tech. J., vol. 17, no. 4, pp. 261-265, Nov. 2015.
Section
Articles