Calcium Orthophosphate Bioceramics

Authors

  • S. V. Dorozhkin Kudrinskaja sq. 1-155, Moscow 123242, Russia

DOI:

https://doi.org/10.18321/ectj52

Abstract

The present review is intended to point the readers’ attention to the important subject of calcium orthophosphate bioceramics. Calcium orthophosphates by one-selves appear to be of a special significance for the human beings because they represent the inorganic part of calcified tissues of mammals. Therefore, many types of calcium orthophosphate-based bioceramics possess remarkable biocompatibility and bioactivity. Materials scientists extensively use this property in attempts to construct artificial bone grafts those are either entirely made of or only surface-coated by calcium orthophosphate bioceramics. Namely, self-setting calcium orthophosphate cements are very helpful in filling voids in damaged bones, while metallic implants covered by a surface layer of calcium orthophosphate bioceramics are widely used for hip joint endoprostheses and tooth substitutes. Porous bioceramicscaffolds made of calcium orthophosphates are very promising tools for tissue engineering applications. In this paper, an overview on the current knowledge on calcium orthophosphate bioceramics has been provided.

References

1. Lide, D.R., The CRC handbook of chemistry and physics, 86th Ed., CRC Press, Boca Raton, Florida, 2005, 2544 p.

2. Dorozhkin, S.V. and Epple, M., Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed. Engl. 2002, 41, 3130–3146.

3. Williams, D.F., The Williams dictionary of biomaterials, Liverpool University Press, Liverpool, 1999, 368 pp.

4. Best, S.M., Porter, A.E., Thian, E.S. and Huang, J., Bioceramics: Past, present and for the future. J. Eur. Ceram. Soc. 2008, 28, 1319–1327.

5. Jandt, K.D., Evolutions, revolutions and trends in biomaterials science – a perspective. Adv. Engin. Mater. 2007, 9, 1035-1050.

6. Salinas, A.J. and Vallet-Regí, M., Evolution of ceramics with medical applications. Z. Anorg. Allg. Chem. 2007, 633, 1762-1773.

7. Lowenstam, H.A. and Weiner, S., On biomineralization, Oxford University Press, 1989.

8. Weiner, S. and Wagner, H.D., Material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 1998, 28, 271-298.

9. Weiner, S., Traub, W. and Wagner, H.D., Lamellar bone: structure-function relations. J. Struct. Biol. 1999, 126, 241-255.

10. Balazsi, C., Weber, F., Kover, Z., Horvath, E. and Nemeth, C., Preparation of calciumphosphate bioceramics from natural resources. J. Eur. Ceram. Soc. 2007, 27, 1601-1606.

11. Murugan, R. and Ramakrishna, S., Crystallographic study of hydroxyapatite bioceramics derived from various sources. Crystal Growth and Design, 2005, 5, 111-112.

12. Albee, F.H. and Morrison H.F., Studies bone growth-triple calcium phosphate as stimulus to osteogenesis. Ann. Surg. 1920, 71, 32-39.

13. Vallet-Regi, M. and González-Calbet, J.M., Calcium phosphates as substitution of bone tissues. Progr. Solid State Chem. 2004, 32, 1–31.

14. Hench, L.L., Bioceramics: from concept to clinic. J. Amer. Ceram. Soc. 1991, 74, 1487–1510.

15. Hench, L.L., Bioceramics. J. Amer. Ceram. Soc. 1998, 81, 1705-1728.

16. Kokubo, T. (Ed.), Bioceramics and their clinical applications. Woodhead Publishing Ltd., Abington Hall, Abington, Cambridge. 2008.

17. Gross, K.A. and Berndt C.C., in: Phosphates: geochemical, geobiological and materials importance. Series: Reviews in Mineralogy and Geochemistry Vol. 48, J. M. Hughes, M. Kohn, J. Rakovan (Eds.). Mineralogical Society of America, Washington, D.C. 2002, pp. 631-672.

18. Blokhuis, T.J., Termaat, M.F., den Boer, F.C., Patka, P., Bakker, F.C. and Haarman, H.J.T.M., Properties of calcium phosphate ceramics in relation to their in vivo behavior. J. Trauma 2000, 48, 179-189.

19. Kim, H.M., Bioactive ceramics: challenges and perspectives. J. Ceram. Soc. Japan 2001, 109, S49-S57.

20. Liebendorfer, A. and Troster, S., Hydroxyapatite ceramics in clinical application: histological findings in 23 patients. Unfallchirurgie 1997, 23, 60–68.

21. LeGeros, R.Z., Lin, S., Rohanizadeh, R., Mijares, D. and LeGeros, J.P., Biphasic calcium phosphate bioceramics: preparation, properties and applications. J. Mater. Sci. Mat. Med. 2003, 14, 201-209.

22. Daculsi, G., Laboux, O., Malard, O. and Weiss, P., Current state of the art of biphasic calcium phosphate bioceramics. J. Mater. Sci. Mat. Med. 2003, 14, 195-200.

23. Lecomte, A., Gautier, H., Bouler, J.M., Gouyette, A., Pegon, Y., Daculsi, G. and Merle, C., Biphasic calcium phosphate: A comparative study of interconnected porosity in two ceramics. J. Biomed. Mater. Res. B Appl. Biomater. 2008, 84B, 1-6.

24. Tancret, F., Bouler, J.M., Chamousset, J. and Minois, L.M., Modelling the mechanical properties of microporous and macroporous biphasic calcium phosphate bioceramics. J. Eur. Ceram. Soc. 2006, 26, 3647-3656.

25. Langstaff, S.D., Sayer, M., Smith, T.J.N., Pugh, S.M., Hesp, S.A.M. and Thompson, W.T., Resorbable bioceramics based on stabilized calcium phosphates. Part I: Rational design, sample preparation and material characterization. Biomaterials 1999, 20, 1727–1741.

26. Langstaff, S.D., Sayer, M., Smith, T.J.N. and Pugh, S.M., Resorbable bioceramics based on stabilized calcium phosphates. Part II: Evaluation of biological response. Biomaterials 2001, 22, 135–150.

27. Sayer, M., Stratilatov, A.D., Reid, J.W., Calderin, L., Stott, M.J., Yin, X., MacKenzie, M., Smith, T.J.N., Hendry, J.A. and Langstaff, S.D., Structure and composition of siliconstabilized tricalcium phosphate. Biomaterials 2003, 24, 369–382.

28. Reid, J.W., Pietak, A.M., Sayer, M., Dunfield, D. and Smith, T.J.N., Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system. Biomaterials 2005, 26, 2887-2897.

29. Reid, J.W., Tuck, L., Sayer, M., Fargo, K. and Hendry, J.A. Synthesis and characterization of single-phase silicon substituted Į-tricalcium phosphate. Biomaterials, 2006, 27, 2916-2925.

30. Tadic, D., Beckmann, F., Schwarz, K. and Epple, M., A novel method to produce hydroxylapatite objects with interconnecting porosity that avoids sintering. Biomaterials 2004, 25, 3335-3340.

31. Linhart, W., Briem, D., Amling, M., Rueger, J.M. and Windolf, J., Mechanical failure of porous hydroxyapatite ceramics 7.5 years after implantation in the proximal tibial. Unfallchirurg 2004, 107, 154–157.

32. Suchanek, W. and Yoshimura, M., Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res. 1998, 13, 94-117.

33. He, L.H., Standard, O.C., Huang, T.T., Latella, B.A. and Swain, M.V., Mechanical behaviour of porous hydroxyapatite. Acta Biomaterialia, 2008, 4, 577-586.

34. Norton, J., Malik, K.R., Darr, J.A. and Rehman, I., Recent developments in processing and surface modification of hydroxyapatite. Adv. Appl. Ceram. 2006, 105, 113-139.

35. LeGeros, R.Z. and LeGeros, J.P., Calcium phosphate bioceramics: past, present, future. Key Engin. Mater. 2003, 240-242, 3-10.

36. McAfee, P.C., Cunningham, B.W., Orbegoso, D.O., Sefter, J.C., Dmitriev, A.E. and Fedder, I.L., Analysis of porous ingrowth in intervertebral disc prostheses. Spine 2003, 28, 332–340.

37. Mastrogiacomo, M., Scaglione, S., Martinetti, R., Dolcini, L., Beltrame, F., Cancedda, R. and Quarto, R., Role of scaffold internal structure on in vivo bone formation in macroporous calcium phosphate bioceramics. Biomaterials 2006, 27, 3230-3237.

38. Okamoto, M., Dohi, Y., Ohgushi, H., Shimaoka, H., Ikeuchi, M., Matsushima, A., Yonemasu, K. and Hosoi, H., Influence of the porosity of hydroxyapatite ceramics on in vitro and in vivo bone formation by cultured rat bone marrow stromal cells. J. Mater. Sci. Mater. Med. 2006, 17, 327-336.

39. Takagi, S. and Chow, L.C., Formation of macropores in calcium phosphate cement implants. J. Biomed. Mater. Res. 2001, 12, 135-139.

40. Walsh, D. and Tanaka, J., Preparation of a bone-like apatite foam cement. J. Mater. Sci. Mater. Med. 2001, 12, 339-344.

41. Chevalier, E., Chulia, D., Pouget, C. and Viana, M., Fabrication of porous substrates: a review of processes using pore forming agents in the biomaterial field. J. Pharmaceutical Sci. 2008, 97, 1135-1154.

42. Komlev, V.S. and Barinov, S.M., Porous hydroxyapatite ceramics of bi-modal pore size distribution. J. Mater. Sci. Mater. Med. 2002, 13, 295–299.

43. Hsu, Y.H., Turner, I.G. and Miles, A.W., Mechanical characterization of dense calcium phosphate bioceramics with interconnected porosity. J. Mater. Sci. Mater. Med. 2007, 18, 2319-2329.

44. Ota, Y., Kasuga, T. and Abe, Y., Preparation and compressive strength behaviour of porous ceramics with ȕ-Ca3(PO3)2 fiber skeletons. J. Amer. Ceram. Soc. 1997, 80, 225–231.

45. von Doernberg, M.C., von Rechenberg, B., Bohner, M., Grünenfelder, S., van Lenthe, G.H., Müller, R., Gasser, B., Mathys, R., Baroud, G. and Auer, J., In vivo behavior of calcium phosphate scaffolds with four different pore sizes. Biomaterials 2006, 27, 5186-5198.

46. Yao, X., Tan, S. and Jiang, D., Improving the properties of porous hydroxyapatite ceramics by fabricating methods. J. Mater. Sci. 2005, 40, 4939-4942.

47. Zhang, J., Fujiwara, M., Xu, Q., Zhu, Y., Iwasa, M. and Jiang, D., Synthesis of mesoporous calcium phosphate using hybrid templates. Microporous and Mesoporous Materials, 2008, 111, 411-416.

48. Wang, H., Zhai, L., Li, Y. and Shi, T., Preparation of irregular mesoporous hydroxyapatite. Mater. Res. Bull. 2008, 43, 1607-1614.

49. Cyster, L.A., Grant, D.M., Howdle, S.M., Rose, F.R.A.J., Irvine, D.J., Freeman, D., Scotchford, C.A. and Shakesheff, K.M. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials 2005, 26 697-702.

50. Lee, E.J., Koh, Y.H., Yoon, B.H., Kim, H.E. and Kim, H.W., Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Mater. Lett. 2007, 61, 2270-2273.

51. Jones, J.R. and Hench, L.L., Regeneration of trabecular bone using porous ceramics. Cur. Opin. Solid State Mater. Sci. 2003, 7, 301– 307.

52. Tas, A.C., Preparation of porous apatite granules from calcium phosphate cement. J. Mater. Sci. Mater. Med. 2008, 19, 2231-2239.

53. Khalil, K.A., Kim, S.W., Dharmaraj, N., Kim, K.W., Kim, H.Y., Novel mechanism to improve toughness of the hydroxyapatite bioceramics using high-frequency induction heat sintering. J. Mater. Process. Technol. 2007, 187/188, 417-420.

54. LeGeros, R.Z., Calcium phosphates in oral biology and medicine, Karger, Basel, 1991.

55. Elliott, J.C., Structure and chemistry of the apatites and other calcium orthophosphates, Elsevier, Amsterdam, 1994.

56. LeGeros, R.Z. and LeGeros, J.P., in: An introduction to bioceramics. (Eds.: Hench L.L. and Wilson J.), World Scientific, London, 1993, 139-180.

57. Yan, X., Yu, C., Zhou, X., Tang, J. and Zhao, D. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. Engl. 2004, 43, 5980–5984.

58. Izquierdo-Barba, I., Ruiz-González, L., Doadrio, J.C., González-Calbet, J.M. and Vallet-Regí, M. Tissue regeneration: a new property of mesoporous materials. Solid State Sci. 2005, 7, 983–989.

59. da Silva, R.V., Bertran, C.A., Kawachi, E.Y. and Camilli, J.A., Repair of cranial bone defects with calcium phosphate ceramic implant or autogenous bone graft. J. Craniofacial Surgery 2007, 18, 281-286.

60. Schnettler, R., Stahl, J.P., Alt, V., Pavlidis, T., Dingeldein, E. and Wenisch, S., Calcium phosphat-based bone substitutes. Eur. J. Trauma 2004, 4, 219–229.

61. Zyman, Z., Glushko, V., Dedukh, N., Malyshkina, S. and Ashukina, N., Porous calcium phosphate ceramic granules and their behaviour in differently loaded areas of skeleton. J. Mater. Sci. Mater. Med. 2008, 19,
2197-2205.

62. Tadic, D. and Epple, M., A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials, 2004, 25, 987–994.

63. LeGeros, R.Z., Properties of osteoconductive biomaterials: calcium phosphates. Clin. Orthop. Rel. Res. 2002, 395, 81–98.

64. Ruan, J.M., Zou, J.P., Zhou, J.N. and Hu, J.Z. Porous hydroxyapatite–tricalcium phosphate bioceramics. Powder Metallurgy, 2006, 49, 66-69.

65. Daculsi, G., Bouler, J.M. and LeGeros, R.Z., Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int. Rev. Cytology 1997, 172, 129-191.

66. Dorozhkin, S.V., Calcium orthophosphate cements for biomedical application. J. Mater. Sci. 2008, 43, 3028-3057.

67. Costantino, P.D., Friedman, C.D., Jones, K., Chow, L.C., Pelzer, H.J. and Sisson, G.A., Hydroxyapatite cement. I. Basic chemistry and histologic properties. Arch. Otolaryngol. Head Neck Surg. 1991, 117, 379-384.

68. Costantino, P.D., Friedman, C.D., Jones, K., Chow, L.C., Pelzer, H.J. and Sisson, G.A., Hydroxyapatite cement. II. Obliteration and reconstruction of the cat frontal sinus. Arch.Otolaryngol. Head Neck Surg. 1991, 117, 385-389.

69. Hong, S.J., Park, Y.K., Kim, J.H., Lee, S.H., Ryu, K.N., Park, C.M. and Kim, Y.S. The biomechanical evaluation of calcium phosphate cements for use in vertebroplasty. J. Neurosurgery Spine 2006, 4, 154-159.

70. Iooss, P., LeRay, A.M., Grimandi, G., Daculsi, G. and Merle, C., A new injectable bone substitute combining poly(İ-caprolactone) microparticles with biphasic calcium phosphate granules. Biomaterials 2001, 22, 2785-2794.

71. Gauthier, O., Goyenvalle, E., Bouler, J.M., Guicheux, J., Pilet, P., Weiss, P. and Daculsi, G., Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: a comparative study 3 and 8 weeks after implantation in rabbit bone. J. Mater. Sci. Mater. Med. 2001, 12, 385-390.

72. Schmitt, M., Weiss, P., Bourges, X., Amador del Valle, G. and Daculsi, G., Crystallization at the polymer/calcium-phosphate interface in a sterilized injectable bone substitute IBS. Biomaterials 2002, 23, 2789-2794.

73. Gauthier, O., Khairoun, I., Bosco, J., Obadia, L., Bourges, X., Rau, C., Magne, D., Bouler, J.M., Aguado, E. and Daculsi, G., Noninvasive bone replacement with a new injectable calcium phosphate biomaterial. J. Biomed. Mater. Res. A 2003, 66A, 47-54.

74. Trojani, C., Boukhechba, F., Scimeca, J.C., Vandenbos, F., Michiels, J.F., Daculsi, G., Boileau, P., Weiss, P., Carle, G.F. and Rochet, N., Ectopic bone formation using an injectable biphasic calcium phosphate/Si-HPMC hydrogel composite loaded with undifferentiated bone marrow stromal cells. Biomaterials 2006, 27, 3256-3264.

75. Lerouxel, E., Weiss, P., Giumelli, B., Moreau, A., Pilet, P., Guicheux, J., Corre, P., Bouler, J.M., Daculsi, G. and Malard, O., Injectable calcium phosphate scaffold and bone marrow graft for bone reconstruction in irradiated areas: An experimental study in rats. Biomaterials 2006, 27, 4566-4572.

76. Blouin, S., Moreau, M.F., Weiss, P., Daculsi, G., Basle, M.F. and Chappard, D., Evaluation of an injectable bone substitute (u-TCP/hydroxyapatite/hydroxy-propyl-methylcellulose) in severely osteopenic and aged rats.J. Biomed. Mater. Res. A 2006, 78A, 570-580.

77. Dorozhkin, S.V., Is there a chemical interaction between calcium phosphates and hydroxypropylmethylcellulose (HPMC) in organic/inorganic composites J. Biomed.Mater. Res. 2001, 54, 247–255.

78. Chris Arts, J.J., Verdonschot, N., Schreurs, B.W. and Buma, P., The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting. Biomaterials 2006, 27, 1110–1118.

79. Laschke, M.W., Witt, K., Pohlemann, T. and Menger, M.D., Injectable nanocrystalline hydroxyapatite paste for bone substitution: in vivo analysis of biocompatibility and vascularization. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 82B, 494–505.

80. Huber, F.X., Berger, I., McArthur, N., Huber, C., Kock, H.P., Hillmeier, J. and Meeder, P.J., Evaluation of a novel nanocrystalline hydroxyapatite paste and a solid hydroxyapatite ceramic for the treatment of
critical size bone defects (CSD) in rabbits. J. Mater. Sci. Mater. Med. 2008, 19, 33–38.

81. Xu, H.H., Weir, M.D., Burguera, E.F. and Fraser, A.M., Injectable and macroporous calcium phosphate cement scaffold. Biomaterials 2006, 27, 4279-4287.

82. Kruyt, M.C., Persson, C., Johansson, G., Dhert, W.J. and de Bruijn, J., Towards injectable cell-based tissue-engineered bone: the effect of different calcium phosphate microparticles and pre-culturing. Tissue Engin. 2006, 12, 309-317.

83. Pichugin, V.F., Surmenev, R.A., Shesterikov, E.V., Ryabtseva, M.A., Eshenko, E.V., Tverdokhlebov, S.I., Prymak, O. and Epple, M., The preparation of calcium phosphate coatings on titanium and nickel-titanium by rfmagnetron-sputtered deposition: composition, structure and micromechanical properties. Surface and Coatings Technology, 2008, 202, 3913-3920.

84. Zyman, Z.Z., Ivanov, I., Rochmistrov, D., Glushko, V., Tkachenko, N. and Kijko, S., Sintering peculiarities for hydroxyapatite with different degrees of crystallinity. J. Biomed. Mater. Res. 2001, 54, 256-263.

85. Willmann, G., Coating of implants with hydroxyapatite - material connections between bone and metal. Adv. Eng. Mater. 1999, 1, 95- 105.

86. Epinette, J.A.M.D. and Geesink, R.G.T., Hydroxyapatite coated hip and knee arthroplasty. Elsevier, Amsterdam, 1995, 394 pp.

87. Sun, L., Berndt, C.C., Gross, K.A. and Kucuk, A., Review: material fundamentals and clinical performance of plasma sprayed hydroxyapatite coatings. J. Biomed. Mater. Res. (Appl. Biomater.) 2001, 58, 570–592.

88. Yang, Y., Kim, K.H. and Ong, J.L., A review on calcium phosphate coatings produced using a sputtering process - an alternative to plasma spraying. Biomaterials 2005, 26, 327–337.

89. Oliveira, A.L., Mano, J.F. and Reis, R.L., Nature-inspired calcium phosphate coatings: present status and novel advances in the science of mimicry. Cur. Opin. Solid State Mater. Sci. 2003, 7, 309–318.

90. Kurella, A. and Dahotre, N.B., Surface modification for bioimplants: the role of laser surface engineering. J. Biomater. Appl. 2005, 20, 5-50.

91. Chang, J.K., Chen, C.H., Huang, K.Y. and Wang, G.J., Eight-year results of hydroxyapatite-coated hip arthroplasty. J. Arthroplasty, 2006, 21, 541-546.

92. Slack, R., Tindall, A., Shetty, A.A., James, K.D. and Rand, C., 15-year follow-up results of the hydroxyapatite ceramic-coated femoral stem. J. Orthopaedic Surgery, 2006, 14, 151- 154.

93. Buchanan, J.M., 17 year review of hydroxyapatite ceramic coated hip implants - a clinical and histological evaluation. Key Engin. Mater. 2006, 309-311, 1341-1344.

94. Buchanan, J.M. and Goodfellow, S., Nineteen years review of hydroxyapatite ceramic coated hip implants: a clinical and histological evaluation. Key Engin. Mater. 2008, 361-363, 1315-1318.

95. Geesink, R.G.T., Osteoconductive coating for total joint arthroplasty. Clin. Orthop. Related Res. 2002, 395, 53–65.

96. Meyers, M.A., Lin, A.Y.M., Seki, Y., Chen, P.Y., Kad, B.K. and Bodde, S., Structural biological composites: an overview. JOM, 2006, 58, 7, 35-42.

97. Coombes, A.G. and Meikle, M.C., Resorbable synthetic polymers as replacements for bone graft. Clin. Mater. 2004, 17, 35–67.

98. Zheng, X., Zhou, S., Li, X. and Weng, J., Shape memory properties of poly(D,Llactide)/hydroxyapatite
composites Biomaterials. 2006, 27, 4288-4295.

99. Bonfield, W., Grynpas, M.D., Tully, A.E., Bowman, J. and Abram, J., Hydroxyapatite reinforced polyethylene - a mechanically compatible implant material for bone replacement. Biomaterials 1981, 2, 185-186.

100. Neumann, M. and Epple, M., Composites of calcium phosphate and polymers as bone substitution materials. Eur. J. Trauma 2006, 32, 125-131.

101. Mickiewicz, R.A., Mayes, A.M. and Knaack, D., Polymer-calcium phosphate cement composites for bone substitutes. J. Biomed. Mater. Res. 2002, 61, 581-592.

102. Wei, G. and Ma, P.X., Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 2004, 25, 4749-4757.

103. Sun, L., Berndt, C.C. and Gross, K.A., Hydroxyapatite/polymer composite flame sprayed coatings for orthopedic application. J. Biomater. Sci. Polymer Ed. 2002, 13, 977-990.

104. Lewandrowski, K.U., Bondre, S.P., Shea, M., Untch, C.M., Hayes, W.C., Hile, D.D., Wise, D.L. and Trantolo, D.J., Composite resorbable polymer/hydroxylapatite composite screws for fixation of osteochondral osteotomies. Biomed. Mater. Engin. 2002, 12, 423-438.

105. Salernitano, E. and Migliares, C., Composite materials for biomedical applications: a review. J. Appl. Biomater. Biomech. 2003, 1, 3-18.

106. O'Donnell, J.N.R., Antonucci, J.M. and Skrtic, D., Amorphous calcium phosphate composites with improved mechanical properties. J. Bioact. Comp. Polym. 2006, 21, 169-184.

107. Baji, A., Wong, S.C., Srivatsan, T.S., Njus, G.O. and Mathur, G., Processing methodologies for polycaprolactonehydroxyapatite composites: a review. Mater. Manufact. Processes 2006, 21, 211-218.

108. Ruhe, P.Q., Hedberg-Dirk, E.L., Padron, N.T., Spauwen, P.H., Jansen, J.A. and Mikos, A.G., Porous poly(DL-lactic-co-glycolic acid)/calcium phosphate cement composite for reconstruction of bone defects. Tissue Engin. 2006, 12, 789-800.

109. Hench, L.L., Biomaterials: a forecast for the future. Biomaterials 1998, 19, 1419-1423.

110. Griffith, L.G. and Naughton, G., Tissue engineering - current challenges and expanding opportunities. Science 2002, 295, 1009-1014.

111. Hench, L.L. and Polak, J.M., Third-generation biomedical materials. Science 2002, 295, 1014-1017.

112. White, A.A., Best, S.M. and Kinloch, I.A., Hydroxyapatite–carbon nanotube composites for biomedical applications: a review. Int. J. Appl. Ceram. Technol. 2007, 4, 1-13.

113. Kealley, C., Elcombe, M., van Riessen, A. and Ben-Nissan, B., Development of carbon nanotube-reinforced hydroxyapatite bioceramics. Physica B, 2006, 385/386, 496-498.

114. Dorozhkin, S.V., Dorozhkina, E.I., Oktar, F.N. and Salman, S. Simplified preparation method of silicon-substituted calcium phosphates according to green chemistry principles. Key Engin. Mater. 2007, 330-332, 55-58.

115. Ben-Nissan, B., Natural bioceramics: from coral to bone and beyond. Cur. Opin. Solid State Mater. Sci. 2003, 7, 283-288.

116. Mizushima, Y., Ikoma, T., Tanaka, J., Hoshi, K., Ishihara, T., Ogawa, Y. and Ueno, A., Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs. J. Controlled Release 2006, 110, 260-265.

117. Ginebra, M.P., Traykova, T. and Planell, J.A., Calcium phosphate cements as bone drug delivery systems: a review. J. Controlled Release 2006, 113, 102-110.

118. Ginebra, M.P., Traykova, T. and Planell, J.A., Calcium phosphate cements: competitive drug carriers for the musculoskeletal system Biomaterials 2006, 27, 2171-2177.

119. Fan, J., Lei, J., Yu, C., Tu, B. and Zhao, D., Hard-templating synthesis of a novel rod-like nanoporous calcium phosphate bioceramics and their capacity as antibiotic carriers. Mater. Chem. Phys. 2007, 103, 489-493.

Downloads

Published

2010-11-15

How to Cite

Dorozhkin, S. V. (2010). Calcium Orthophosphate Bioceramics. Eurasian Chemico-Technological Journal, 12(3-4), 247–258. https://doi.org/10.18321/ectj52

Issue

Section

Articles