Catalytic Acetylation of Aromatics with Metal Chlorides and Solid Acids − a Comparative Study
DOI:
https://doi.org/10.18321/ectj611Abstract
Evaluation of catalytic performances of selected metal chlorides such as AlCl3, SnCl4, ZnCl2, FeCl3, InCl3 and GaCl3 with solid acids such as sulfated zirconia, and zeolite beta was accomplished for acetylation of anisole, toluene and naphthalene. Presence of super acidity (Lewis or Bronsted acid) is found to be indispensable for activation of substrates towards acetylation reactions. In addition, presence of redox centers would further complement with the Lewis acid sites rendering catalytic stamina against deactivation. Strength of Lewis acid basically determines the activity of the metal chlorides towards acetylation. Among the Lewis acids investigated, FeCl3, InCl3 and GaCl3 exhibit their catalytic behaviour mostly through redox property as is evident from the conservation of Turn over number even after first cycle. Sulfated zirconia surpasses all the acid catalysts including metal chlorides and exhibits extended catalytic activity in acetylation of anisole. The pre-eminence of sulphated zirconia over other catalytic systems is owing to the synergistic effect of Lewis and Bronsted acidity.
References
(2). G.A. Olah, Friedel-Crafts chemistry, Wiley/Interscience, New York, London, 1973.
(3). R.J. Gillespie, T.E. Peel, Adv. Phys. Org. Chem. 1:9 (1972).
(4). G. Harvey, A. Vogt, H.W. Kouwenhoven, R. Prins, Proc. Int. Zeolite Conf. 2:363 (1992).
(5). A. Heidekum, M.A. Harmer and W.F. Hoelderich, J. Catal. 188:230 (1999).
(6). P. Laszlo, M.T. Montaufier, Tett. Lett. 1561: 32 (1991).
(7). G.D. Yadav and J.J. Nair, Microporous. Mesoporous Mater., 1:33 (1999).
(8). J. Kaur, K. Griffin, B. Harrison and I.V. Kozhevnikov, J. Catal. 448: 208 (2002).
(9). J. Kaur and I.V. Kozhevnikov, Chem. Comm., 2508, (2002).
(10). V.R. Choudhary, S.K. Jana, J. Mol. Catal. A: Chemical 267:180 (2002).
(11). V. R. Choudhary, S.K. Jana, P.S. Nilesh, Tett. Lett. 1105:43 (2002).
(12). V.R Choudhary, S.K. Jana, P.S. Nilesh, Catal. Lett., 235:76 (2001).
(13). C.G. Frost, J.P. Hartley and D. Griffin, Tett. Lett., 4789:43 (2002).
(14). W. Wang, C.L Chen, N.P. Xu, C.Y. Mou, Green Chem., 257:4 (2002).
(15). C. Hansch, A. Leo, R. Taft, Chem. Rev., 165:91 (1991).
(16). B.M. Choudary, M. Sateesh, M.L. Kantam, K.V. Ram Prasad, Appl. Catal 155:171 (1998).
(17). V.R. Choudhary, S.K. Jana, B.P. Kiran, Catal. Lett, 223: 64 (2000).
(18). C. Morterra, G. Cerrato, F. Pinna, M. Signoretto, J. Phys. Chem. 123:98 (1994).
(19). K. Biro, F. Figueras, C. Marquez Alvarez, S. Bekassy and J. Valyon, J. Thermal Analysis and Calorimetry 345:56 (1999).
(20). K. Arata, H. Nakamura and M. Shouji, Appl. Catal. A: General 213:197 (2000).
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.