Catalytic Acetylation of Aromatics with Metal Chlorides and Solid Acids − a Comparative Study

Authors

  • Paul Wilson Madras Christian College, Tambaram, Chennai 600 059, India
  • Mark L. Kaliya Blechner Center for Industrial Catalysis and Process Development Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105 Beersheva, Israel
  • Miron V. Landau Blechner Center for Industrial Catalysis and Process Development Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105 Beersheva, Israel
  • Moti Herskowitz Blechner Center for Industrial Catalysis and Process Development Department of Chemical Engineering, Ben-Gurion University of the Negev, 84105 Beersheva, Israel

DOI:

https://doi.org/10.18321/ectj611

Abstract

Evaluation of catalytic performances of selected metal chlorides such as AlCl3, SnCl4, ZnCl2, FeCl3, InCl3 and GaCl3 with solid acids such as sulfated zirconia, and zeolite beta was accomplished for acetylation of anisole, toluene and naphthalene. Presence of super acidity (Lewis or Bronsted acid) is found to be indispensable for activation of substrates towards acetylation reactions. In addition, presence of redox centers would further complement with the Lewis acid sites rendering catalytic stamina against deactivation. Strength of Lewis acid basically determines the activity of the metal chlorides towards acetylation. Among the Lewis acids investigated, FeCl3, InCl3 and GaCl3 exhibit their catalytic behaviour mostly through redox property as is evident from the conservation of Turn over number even after first cycle. Sulfated zirconia surpasses all the acid catalysts including metal chlorides and exhibits extended catalytic activity in acetylation of anisole. The pre-eminence of sulphated zirconia over other catalytic systems is owing to the synergistic effect of Lewis and Bronsted acidity.

References

(1). G.A. Olah, Friedel-Crafts and related reactions, Vol. 1-4, Wiley/Interscience, New York, London, 1963-1964.

(2). G.A. Olah, Friedel-Crafts chemistry, Wiley/Interscience, New York, London, 1973.

(3). R.J. Gillespie, T.E. Peel, Adv. Phys. Org. Chem. 1:9 (1972).

(4). G. Harvey, A. Vogt, H.W. Kouwenhoven, R. Prins, Proc. Int. Zeolite Conf. 2:363 (1992).

(5). A. Heidekum, M.A. Harmer and W.F. Hoelderich, J. Catal. 188:230 (1999).

(6). P. Laszlo, M.T. Montaufier, Tett. Lett. 1561: 32 (1991).

(7). G.D. Yadav and J.J. Nair, Microporous. Mesoporous Mater., 1:33 (1999).

(8). J. Kaur, K. Griffin, B. Harrison and I.V. Kozhevnikov, J. Catal. 448: 208 (2002).

(9). J. Kaur and I.V. Kozhevnikov, Chem. Comm., 2508, (2002).

(10). V.R. Choudhary, S.K. Jana, J. Mol. Catal. A: Chemical 267:180 (2002).

(11). V. R. Choudhary, S.K. Jana, P.S. Nilesh, Tett. Lett. 1105:43 (2002).

(12). V.R Choudhary, S.K. Jana, P.S. Nilesh, Catal. Lett., 235:76 (2001).

(13). C.G. Frost, J.P. Hartley and D. Griffin, Tett. Lett., 4789:43 (2002).

(14). W. Wang, C.L Chen, N.P. Xu, C.Y. Mou, Green Chem., 257:4 (2002).

(15). C. Hansch, A. Leo, R. Taft, Chem. Rev., 165:91 (1991).

(16). B.M. Choudary, M. Sateesh, M.L. Kantam, K.V. Ram Prasad, Appl. Catal 155:171 (1998).

(17). V.R. Choudhary, S.K. Jana, B.P. Kiran, Catal. Lett, 223: 64 (2000).

(18). C. Morterra, G. Cerrato, F. Pinna, M. Signoretto, J. Phys. Chem. 123:98 (1994).

(19). K. Biro, F. Figueras, C. Marquez Alvarez, S. Bekassy and J. Valyon, J. Thermal Analysis and Calorimetry 345:56 (1999).

(20). K. Arata, H. Nakamura and M. Shouji, Appl. Catal. A: General 213:197 (2000).

Downloads

Published

2004-09-20

How to Cite

Wilson, P., Kaliya, M. L., Landau, M. V., & Herskowitz, M. (2004). Catalytic Acetylation of Aromatics with Metal Chlorides and Solid Acids − a Comparative Study. Eurasian Chemico-Technological Journal, 6(3), 193–199. https://doi.org/10.18321/ectj611

Issue

Section

Articles