Dead-Core Solutions to Simple Catalytic Reaction Problems in Chemical Engineering
DOI:
https://doi.org/10.18321/ectj784Keywords:
diffusion-reaction, dead-core, strong adsorption, exact solution, collocation methodAbstract
The catalytic chemical reaction is usually carried out in a pellet where the catalyst is distributed throughout its porous structure. The selectivity, yield and productivity of the catalytic reactor often depend on the rates of chemical reactions and the rates of diffusion of species involved in the reactions in the pellet porous space. In such systems, the fast reaction can lead to the consumption of reactants close to the external pellet surface and creation of the dead core where no reaction occurs.
This will result in an inefficient use of expensive catalyst. In the discussed simplified diffusion-reaction problems a nonlinear reaction term is of power-law type with a small positive reaction exponent. Such reaction term represents the kinetics of catalytic reaction accompanied by a strong adsorption of the reactant. The ways to calculate the exact solutions possessing dead cores are presented. It was also proved analytically that the exact solution of the nonlinear two-point boundary value problem satisfies physical a-priori bounds. Furthermore, the approximate solutions were obtained using the orthogonal collocation method for pellets of planar, spherical and cylindrical geometries. Numerical results confirmed that the length of the dead core increases for the more active catalysts due to the larger values of the reaction rate constant. The dead core length also depends on the pellet geometry.
References
(1). R. Aris, The mathematical theory of diffusion and reaction in permeable catalysts. Vol. I. Oxford University Press, London, U.K., 1975, p. 460.
(2). C. Bandle, R.P. Sperb, I. Stakgold, Nonlinear Anal. – Theor. 8 (1984) 321–333. Crossref
(3). S.A. Gardezi, B. Joseph, Ind. Eng. Chem. Res. 54 (2015) 8080–8092. Crossref
(4). E.H. Cho, K.Y. Koo, H.W. Lee, Y.-K. Park, W.L. Yoon, Ch.H. Ko, Int. J. Hydrogen Energy 42 (2017) 18350–18357. Crossref
(5). B. Golman, Chemical Reaction Engineering with IPython. Part I: Transport Processes and Reaction in Porous Pellets. Ventus Publishing, Denmark, 2016, p. 148.
(6). A.K. Aziz, A.B. Stephens, M. Suri, Numer. Math. 53 (1988) 1–11. Crossref
(7). J.W. Barret, R.M. Shanahan, Numer. Math. 59 (1991) 217–242. Crossref
(8). K.R. Fowler, C.T. Kelley, SIAM J. Numer. Anal. 43 (2005) 1385–1406. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.