Non-Graphitizing Carbon: Its Structure and Formation from Organic Precursors

  • P. J.F. Harris Electron Microscopy Laboratory, Department of Chemistry, J.J. Thomson Building, University of Reading, Whiteknights, Reading RG6 6AF, UK
Keywords: fullerenes, non-graphitizing carbon, microporous carbon, electron microscopy

Abstract

Non-graphitizing carbon, or char, has been intensively studied for decades, but there is still no agreement about its detailed atomic structure. The discovery of the fullerenes, and of related structures such as nanotubes, stimulated the present author and others to put forward models which incorporate non-hexagonal rings into hexagonally-bonded sp2 carbon networks, creating a microporous structure made up of highly curved fragments. However, this model has not been universally accepted. This paper reviews the models that have been put forward for non-graphitizing carbon and outlines the evidence for a fullerene-like structure. The influence of precursor chemistry on the final structure of the carbon is also discussed.

References

(1). R.E. Franklin, Proc. Roy. Soc. A 209 (1951) 196‒218. Crossref

(2). P.J.F. Harris, Interdiscipl. Sci. Rev. 26 (2001) 204‒210. Crossref

(3). P.J.F. Harris, S.C. Tsang, Philos. Mag. A 76 (1997) 667‒677. Crossref

(4). P.J.F. Harris, Interdiscipl. Sci. Rev. 42 (1997) 206‒218. Crossref

(5). P.J.F. Harris, A. Burian, S. Duber, Phil. Mag. Lett. 80 (2000) 381‒386. Crossref

(6). P.J.F. Harris, Chemistry and Physics of Carbon, Vol. 28 (2003) 1‒39. Ed. Ljubisa R. Radovic. Chapter One: Impact of the Discovery of Fullerenes on Carbon Science.

(7). P.J.F. Harris, Crit. Rev. Solid State 30 (2005) 235‒253. Crossref

(8). P.J.F. Harris, J. Materials Science 48 (2013) 565‒577. Crossref

(9). L.L. Ban, D. Crawford, H. Marsh, J. Appl. Cryst. 8 (1975) 415‒420. Crossref

(10). G.M. Jenkins, K. Kawamura, Nature 231 (1971) 175‒176. Crossref

(11). P.R. Buseck, B.J. Huang, L.P. Keller, Energy and Fuels 1 (1987) 105–110. Crossref

(12). H. Murayama, T. Maeda, Nature 345 (1990) 791– 793. Crossref

(13). Z. Liu, K. Suenaga, P.J.F. Harris, S. Iijima, Phys. Rev. Lett. 102 (2009) 15501. Crossref

(14). A. Oberlin, Carbon 22 (1984) 521–541. Crossref

(15). A. Oberlin, Chemistry and Physics of Carbon 22 (1989) 1-143.

(16). A. Oberlin, S. Bonnamy, P.G. Rouxhet, Chemistry and Physics of Carbon 26 (1999) 1-148.

(17). A. Oberlin, S. Bonnamy, Chemistry and Physics of Carbon 31 (2012) 1-83.

(18). H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318 (1985) 162–163. Crossref

(19). W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347 (1990) 354–358. Crossref

(20). S. Iijima, Nature 354 (1991) 56–58.

(21). J.P. Abrahamson, A. Jain, A.C.T. van Duin, R.L. Vander Wal, C 4 (2018) 36. Crossref

(22). X. Ke, C. Bittencourt, G. Van Tendeloo, Beilstein J. Nanotechnol. 6 (2015) 1541–1557. Crossref

(23). P.J.F. Harris, C 4 (2018) 4. Crossref

(24). P.J.F. Harris, Z. Liu, K. Suenaga, J. Phys.: Condens. Matter 20 (2008) 362201. Crossref

(25). J. Guo, J.R. Morris, Y. Ihm, C.I. Contescu, N.C. Gallego, G. Duscher, S.J. Pennycook, M.F. Chisholm, Small 8 (2012) 3283–3288. Crossref

(26). Z. Zhang, R. Brydson, Z. Aslam, S. Reddy, A. Brown, A. Westwood, B. Rand, Carbon 49 (2011) 5049–5063. Crossref

(27). A. Burian, J.C. Dore, Acta Phys. Pol. A 98 (2000) 457–468. Crossref

(28). A. Burian, P. Daniel, S. Duber, J.C. Dore, Philos. Mag. B 81 (2001) 525‒540. Crossref

(29). N. Woźnica, Ł. Hawełek, S. Duber, H.E. Fischer, V. Honkimäki, M. Pawlyta, A. Bulou, A. Burian, Philos. Mag. 97 (2017) 1675‒1697. Crossref

(30). M.W. Smith, I. Dallmeyer, T.J. Johnson, C.S. Brauer, J.-S. McEwen, J.F. Espinal, M. Garcia- Perez, Carbon 100 (2016) 678‒692. Crossref

(31). A.C. Forse, C. Merlet, P.K. Allan, E.K. Humphreys, J.M. Griffin, M. Aslan, M. Zeiger, V. Presser, Y. Gogotsi, C.P. Grey, Chem. Mater. 27 (2015) 6848‒6857. Crossref

(32). R.C. Powles, N.A. Marks, D.W.M. Lau, Phys. Rev. B 79 (2009) 075430. Crossref

(33). A.P. Terzyk, S. Furmaniak, P.A. Gauden, P.J.F. Harris, J. Włoch, P. Kowalczyk, J. Phys.-Condens. Mat. 19 (2007) 406208. Crossref

(34). A.P. Terzyk, S. Furmaniak, P.J.F. Harris, P.A. Gauden, J. Włoch, P. Kowalczyk, G. Rychlicki, Phys. Chem. Chem. Phys. 9 (2007) 5919‒5927. Crossref

(35). S. Furmaniak, A.P Terzyk, P.A. Gauden, P.J.F. Harris, P. Kowalczyk, J. Phys.-Condens. Mat. 21 (2009) 315005. Crossref

(36). S. Furmaniak, P. Kowalczyk, A.P. Terzyk, P.A. Gauden, P.J.F. Harris, J. Colloid Interf. Sci. 397 (2013) 144‒153. Crossref

(37). J.J. Kipling, J.N. Sherwood, P.V. Shooter, N.R. Thompson, Carbon 1 (1964) 315‒318. Crossref

(38). J.S. McDonald-Wharry, M. Manley-Harris, K.L. Pickering, Energ. Fuel. 30 (2016) 7811‒7826. Crossref

(39). K.H. Homann, Angew. Chem. Int. Edit. 37 (1998) 2435‒2451. Crossref

(40). J.S. McDonald-Wharry, M. Manley-Harris, K.L. Pickering, Carbon 59 (2013) 383‒405. Crossref

(41). J.S. McDonald-Wharry, M. Manley-Harris, K.L. Pickering, Philos. Mag. 95 (2015) 4054‒4077. Crossref

(42). C. Gomez-Navarro, J.C. Meyer, R.S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, U. Kaiser, Nano Lett. 10 (2010) 1144‒1148. Crossref

(43). S.H. Dave, C. Gong, A.W. Robertson, J.H. Warner, J.C. Grossman, ACS Nano 10 (2016) 7515‒7522. Crossref

(44). F. Vallejos-Burgos, N. Díaz-Pérez, A. Silva- Villalobos, R. Jiménez, X. García, L.R. Radovic, Carbon 109 (2016) 253‒263. Crossref

(45). A. Nieto-Marquez, I. Espartero, J.C. Lazo, A. Romero, J.L. Valverde, Chem. Eng. J. 153 (2009) 211‒216. Crossref

(46). J.P. Abrahamson, R. L. Vander Wal, C 4 (2018) 33. Crossref

Published
2019-09-30
How to Cite
[1]
P. Harris, “Non-Graphitizing Carbon: Its Structure and Formation from Organic Precursors”, Eurasian Chem. Tech. J., vol. 21, no. 3, pp. 227-234, Sep. 2019.
Section
Articles