Study of the Properties of Qxide Coatings Formed on Titanium by Plasma Electrolytic Oxidation Method

  • Zh. M. Ramazanova JSC “National Center for Space Research and Technology”, 15, Shevchenko Str., 050010, Almaty, Kazakhstan
  • M. G. Zamalitdinova JSC “National Center for Space Research and Technology”, 15, Shevchenko Str., 050010, Almaty, Kazakhstan
Keywords: micro arc oxidation, plasma electrolytic oxidation, oxide coating, tribological tests, microhardness, electrolyte


 The development of the modern industry requires to develop high-performance, environmentally friendly methods for the production of light structural material surface coatings. The use of products and structures made of titanium and its alloys with high wear resistance and corrosion resistance prevails in many industries, in particular in the aerospace industry, shipbuilding, and transport engineering. Nowadays, the application of the plasma electrolytic oxidation method, a promising metal surface treatment method, is of increasing interest. Besides this method is called microarc oxidation. The objective of this work is to study the properties of oxide coatings obtained on titanium alloys under the influence of rapid pulsed effects of the plasma electrolytic oxidation process. Oxide composite coatings were obtained in various electrolyte solutions in this work. Oxide coatings are characterized by high wear resistance. It has been established in tribological tests that the wear resistance of the coating is increased by 2–15 times compared with an uncoated sample. The friction coefficient curves obtained for coated samples show that there is no destruction of the coating to the base. The breaking-in area is marked in the curves. The friction surfaces are adjusted to each other and go to a stable friction mode. The latter results in the friction coefficient decrease and wear rate decrease.


(1). M.P. Shankar, R. Sokkalingam, K. Sivaprasad, Veerappan Muthupandi, Advanced Materials Research 1148 (2018) 159‒164. Crossref

(2). P.V. Kumar, B. Shantanu, Reviews of Adhesion and Adhesives 5 (2017) 79‒104. Crossref

(3). J. Jin, X.-H. Li, J.-W. Wu, B.-Y. Lou, Rare Met. 37 (2018) 26‒34. Crossref

(4). A.I. Mamaev, V.A. Mamaeva, N.F. Kolenchin, A.K. Chubenko, Y.B. Kovalskaya, T.A. Konstantinova, Y.N. Dolgova, E.Y. Beleckaya, Russ. Phys. J. 58 (2016) 1720‒1725. Crossref

(5). E.A. Koblova, A.Yu. Ustinov, V.S. Rudnev, I.V. Lukiyanchuk, I.V. Chernykh, J. Struct. Chem. 58 (2017) 1129‒1136. Crossref

(6). Zhiyu Yan, Manting Men, Bing Sun, Qiaomin Wang, Yue Han, Mi Wen, J. Adv. Oxid. Technol. 20 (2017) 190‒197. Crossref

(7). V.I. Kalita, A.I. Mamaev, V.A. Mamaeva, D.A. Malanin, D.I. Komlev, A.G. Gnedovets, V.V. Novochadov, V.S. Komlev, A.A. Radyuk, Inorg. Mater. Appl. Res. 7 (2016) 376‒387. Crossref

(8). B.L. Krit, V.A. Ludin, N.V. Morozova, A.V. Apelfeld, Surf. Engin. Appl. Electrochem. 54 (2018) 227‒246. Crossref

(9). T. Zhou, Z.-B. Qin, Q. Luo, Q. Zhang, B. Shen, W.-B. Hu, L. Liu, Acta Metall. Sinic. 31 (2018) 1109‒1120. Crossref

(10). T. Zhou, Y. Ding, Q. Luo, Z. Qin, Q. Zhang, B. Shen, W. Hu, L. Liu, J. Mater. Eng. Perform. 27 (2018) 5489‒5499. Crossref

(11). N.D. Sakhnenko, M.V. Ved, A.V. Karakurkchi, Prot. Met. Phys. Chem. Surf. 53 (2017) 1082‒1090. Crossref

(12). Zh.M. Ramazanova, K.Zh. Kirgizbayeva, A.U. Akhmedyanov, M.A. Jaxymbetova, D. Yergaliyev, A. Zhakupova, O. Abdirashev. International Journal of Mechanical Engineering and Technology 9 (2018) 709–721.

(13). V.V. Shtefan, A.Yu. Smirnova, Prot. Met. Phys. Chem. Surf. 53 (2017) 322–328. Crossref

(14). F. Karabudak, R. Yeşildal, E.E. Şűkűroğlu, S. Şűkűroğlu, H. Zamanlou, N. Dikbaş, F. Bayındır, S. Şen, Y. Totik, Arab. J. Sci. Eng. 42 (2017) 2329–2339. Crossref

(15). V.A. Koshuro, M.A. Fomina, I.V. Rodionov, A.A. Fomin, Biomed. Eng. 50 (2016) 54–57. Crossref

(16). M. Shi, H. Li, Surf. Engin. Appl. Electrochem. 52 (2016) 32–42. Crossref

(17). M. Shi, H. Li, Prot. Met. Phys. Chem. Surf. 52 (2016) 900‒909. Crossref

(18). A.I. Mamaev, V.A. Mamaeva, V.I. Kalita, D.I. Komlev, A.A. Radyuk, A.Yu. Iyannikov, A.B. Mikhaylova, A.S. Baikin, M.A. Sevostyanov, N.A. Amelchenko, Inorg. Mater. Appl. Res. 9 (2018) 855‒860. Crossref

(19). A.I. Mamaev, V.A. Mamaeva, E.Yu. Beletskaya, Russ. Phys. J. 60 (2017) 600–608. Crossref

(20). M. Roknian, A. Fattah-Alhosseini, S.O. Gashti, J. Materi. Eng. Perform. 27 (2018) 1343–1351. Crossref

(21). A.I. Mamaev, V.A. Mamaeva. High current processes in electrolyte solutions. Novosibirsk, SB RAS Publ., 2005, 255 p.

(22). I.V. Suminov, A.V. Epelfeld, V.B. Lyudin, B.L. Krit, A.M. Borisov. Microarc oxidation (theory, technology, eduipment). Moscow, ECOMET Publ., 2005, 368 p.

(23). A.I. Mamaev, T.I. Dorofeeva, V.A. Mamaeva, V.N. Borikov, Yu.Yu. Budnitskaya, A.A. Makarov. Voltammetry Characteristics of Ceramic Coatings Obtained bu Pulse Microplasma Processes on Aluminium, Titanium and Magnesium Alloys. Proceedings 7th International Conference on Modification of Materials with Particle Beams and Plasma Flows. Tomsk, 2004, p. 340-342.

How to Cite
Z. Ramazanova and M. Zamalitdinova, “Study of the Properties of Qxide Coatings Formed on Titanium by Plasma Electrolytic Oxidation Method”, Eurasian Chem. Tech. J., vol. 22, no. 1, pp. 51-58, Mar. 2020.