Magnetic Properties of Fe, Co and Ni Based Nanopowders Produced by Chemical-Metallurgy Method

Authors

  • Tien Hiep Nguyen National University of Science and Technology MISiS, Leninskiy prospekt 4, Moscow, Russia; Le Quy Don Technical University, Hoang Quoc Viet Str. 236, Bac Tu Liem, Ha Noi, Viet Nam
  • Y. V. Konyukhov National University of Science and Technology MISiS, Leninskiy prospekt 4, Moscow, Russia
  • Nguyen Van Minh Institute of Technology, Cau Vong Str. 3, Bac Tu Liem, Hanoi, Vietnam
  • D. Y. Karpenkov National University of Science and Technology MISiS, Leninskiy prospekt 4, Moscow, Russia
  • V. V. Levina National University of Science and Technology MISiS, Leninskiy prospekt 4, Moscow, Russia
  • G. Karunakaran Seoul National University of Science and Technology, Gongneung-ro 232, Nowon-gu, Seoul, Republic of Korea
  • A. G. Buchirina National University of Science and Technology MISiS, Leninskiy prospekt 4, Moscow, Russia

DOI:

https://doi.org/10.18321/ectj1028

Keywords:

nanopowder, nanocomposite, chemical metallurgy method, magnetic properties

Abstract

This research study describes the magnetic properties of Fe, Co and Ni metallic nanopowders (NPs) and their ternary nanocomposites (NCs), which can be used as fillers in radio-wave absorbing composite materials and coatings, as well as for magnetic protection of banknotes and security paper. The nanopowders were prepared by the chemical metallurgy method. The desired properties of Fe, Co and Ni NPs and NCs were achieved by co-precipitation, the addition of surfactants and changes in reduction temperature and time parameters. Magnetic measurements showed that all samples of pure metal NPs are semi-hard magnetic materials. The added surfactants have distinct effects on the dimensional and magnetic characteristics of Fe, Co and Ni NPs. Ni–Co–Fe NCs are also mainly semi-hard magnetic materials. Fine-tuning of their composition and chemical reduction temperatures allows controlling the values of Ms and Hc in large ranges from 49 to 197 A·m2/kg and from 4.7 to 60.6 kA/m, respectively.

 

References

(1). V.V. Mody, R. Siwale, A. Singh, H.R. Mody, J. Pharm. Bioall. Sci. 2 (2010) 282‒289. Crossref DOI: https://doi.org/10.4103/0975-7406.72127

(2). H. Hahn, K.A. Padmanabhan, Nanostruct. Mater. 6 (1995) 191‒200. Crossref DOI: https://doi.org/10.1016/0965-9773(95)00042-9

(3). V.M. Nguyen, G. Karunakaran, T.H. Nguyen, E.A. Kolesnikov, M.I. Alymov, V.V. Levina, Y.V. Konyukhov, Lett. Mater. 10 (2020) 174‒178. Crossref DOI: https://doi.org/10.22226/2410-3535-2020-2-174-178

(4). H.E. Schaefer, R. Würschum, R. Birringer, H. Gleiter, Phys. Rev. B 38 (1988) 9545‒9554. Crossref DOI: https://doi.org/10.1103/PhysRevB.38.9545

(5). F.E. Kruisa, H. Fissana, A. Peleda, J. Aerosol Sci. 29 (1998) 511‒535. Crossref DOI: https://doi.org/10.1016/S0021-8502(97)10032-5

(6). V.V. Rybin, A.A. Zisman, N.Y. Zolotorevsky, Acta Metall. Mater. 41 (1993) 2211‒2217. Crossref DOI: https://doi.org/10.1016/0956-7151(93)90390-E

(7). D. Sellmyer, R. Skomski, Advanced Magnetic Nanostructures, Springer, New York, 2006. Crossref DOI: https://doi.org/10.1007/b101199

(8). Z. Tang, P. Sheng, Nano Science and Technology: Novel Structures and Phenomena, CRC Press, 2003, p. 272. ISBN-10: 0415308321

(9). A.S. Lileev, O.A. Arinicheva, M. Reissner, F. Kubel, A.A. Sein, Met. Sci. Heat Treat. 56 (2015) 591‒594. Crossref DOI: https://doi.org/10.1007/s11041-015-9804-7

(10). A.S. Lileev, V.A. Sein, E.S. Khotulev, J. Phys.: Conf. Ser. 1134 (2018) 012035. Crossref DOI: https://doi.org/10.1088/1742-6596/1134/1/012035

(11). A.S. Lileev, V.V. Pinkas, K.V. Voronchikhina, A.V. Gunbin, Met. Sci. Heat Treat. 60 (2018) 489‒493. Crossref DOI: https://doi.org/10.1007/s11041-018-0306-2

(12). A.S. Lileev, A.V. Gunbin, A.S. Perminov, Met. Sci. Heat Treat. 61 (2019) 171‒172. Crossref DOI: https://doi.org/10.1007/s11041-019-00395-1

(13). L. Lin, S.A. Starostin, V. Hessel, Q. Wang, Chem. Eng. Sci. 168 (2017) 360‒371. Crossref DOI: https://doi.org/10.1016/j.ces.2017.05.008

(14). A. Zolriasatein, A. Shokuhfar, Physica E 74 (2015) 101‒107. Crossref DOI: https://doi.org/10.1016/j.physe.2015.06.015

(15). J. Xie, J. Jiang, P. Davoodi, M.P. Srinivasan, C.-H. Wang, Chem. Eng. Sci. 125 (2015) 32‒57. Crossref DOI: https://doi.org/10.1016/j.ces.2014.08.061

(16). N.S. Kanhe, A.K. Tak, A.B. Nawale, S.A. Raut, S.V. Bhoraskar, A.K. Das, V.L. Mathea, Mater. Des. 112 (2016) 495‒504. Crossref DOI: https://doi.org/10.1016/j.matdes.2016.09.078

(17). F. Yılmaz, D.-J. Lee, J.-W. Song, H.-S. Hong, H.-T. Son, Jae-Sik Yoon, S.-J. Hong, Powder Technol. 235 (2013) 1047‒1052. Crossref DOI: https://doi.org/10.1016/j.powtec.2012.10.024

(18). S.A. Tikhomirov, M.I. Alymov, I.V. Tregubova, V.S. Shustov, Nanotechnol. Russia 6 (2011) 268‒271. Crossref DOI: https://doi.org/10.1134/S1995078011020170

(19). Y.V. Konyukhov, V.V. Levina, D.I. Ryzhonkov, I.I. Puzik, Nanotechnol. Russia 3 (2008) 352‒357. Crossref DOI: https://doi.org/10.1134/S1995078008050108

(20). T.H. Nguyen, G. Karunakaran, Y.V. Konyukhov, N.V. Minh, D.Y. Karpenkov, I.N. Burmistrov, Nanomaterials 11 (2021) 341. Crossref DOI: https://doi.org/10.3390/nano11020341

Downloads

Published

25-03-2021

How to Cite

Nguyen, T. H., Konyukhov, Y. V., Minh, N. V., Karpenkov, D. Y., Levina, V. V., Karunakaran, G., & Buchirina, A. G. (2021). Magnetic Properties of Fe, Co and Ni Based Nanopowders Produced by Chemical-Metallurgy Method. Eurasian Chemico-Technological Journal, 23(1), 3–8. https://doi.org/10.18321/ectj1028

Issue

Section

Article