Powder Composition Structurization of the Ti-25Al-25Nb (at.%) System upon Mechanical Activation and Subsequent Spark Plasma Sintering
DOI:
https://doi.org/10.18321/ectj1032Keywords:
Ti-Al-Nb system, mechanical activation, spark plasma sintering (SPS), microstructure, composite particlesAbstract
The results of a study of the microstructure evolution of pre-mechanically activated elementary powders based on the Ti-25Al-25Nb (at.%) compositions differing in the particle size of the aluminum (Al) component are presented. It was found that during the mechanical activation, most of the Al was dissolved in the Ti and Nb lattices by interpenetration with the formation of solid solutions (Ti, Al) and (Nb, Al). It has been established that an increase in temperature to 1400 °C, when sintering powder materials based on the Ti-Al-Nb system, leads to a sharp increase in the temperature of Al particles, as a result of the melting of which it is impossible to control the phase formation, which ultimately leads to the difficulty of obtaining the required product. It was determined that in the process of spark-plasma sintering of mechanically activated compositions, intermetallic compounds are formed based on phases ‒ α2, B2 and O, and with an increase in the sintering temperature, their morphology and distribution in the alloy volume change.
References
(1). Pareek, R. Dom, J. Gupta, J. Chandran, V. Adepu, P.H. Borse, Materials Science for Energy Technologies 3 (2020) 319–327. Crossref
(2). J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energ. 44 (2019) 15072–15086. Crossref
(3). E. Boateng, A. Chen, Materials Today Advances 6 (2020) 2–11. Crossref
(4). M. Nagpa, R. Kakkar, Int. J. Hydrogen Energ. 43 (2018) 12168–12188. Crossref
(5). Sh. Kurbanbekov, М. Skakov, V. Baklanov B. Karakozov, Mater. Test. 59 (2017) 1033–1036. Crossref
(6). J. Coleto, J. Goni, P. Egizabal, M. García de Cortázar, G. Lilly, X. Sainz, L. Pambaguian, Materials Science Forum 426-432 (2003) 2145–2150. Crossref
(7). J. Shen, A. Feng, Acta Metall. Sin. 49 (2013) 1286–1294. Crossref
(8). Yong Huang, Yongchang Liu, Chong Li, Zongqing Ma, Liming Yu, Huijun Li, Vacuum (2019) 209–219. Crossref
(9). H. Fang, R. Chen, X. Chen, Y. Yang, Y. Su, H. Ding, J. Guo, Intermetallics 104 (2019) 43–51. Crossref
(10). Polozov, V. Sufiiarov, A. Kantyukov, N. Razumov, I. Goncharov, T. Makhmutov, A. Silin, A. Kim, K. Starikov, A. Shamshurin, A. Popovich, Addit. Manuf. 34 (2020) 1–14. Crossref
(11). W. Wang, H. Zhou, Q. Wang, Y. Gao, K. Wang, J. Mater. Eng. Perform. 29 (2020) 1686–1695. Crossref
(12). K-H. Sim, G. Wang, J-M. Ju, J. Yang, X. Li, J. Alloy. Compd. 704 (2017) 425–433. Crossref
(13). Kaliyeva, Y. Tileuberdi, L. Galfetti, Y. Ongarbayev, Eurasian Chem.-Technol. J. 22 (2020) 141‒147. Crossref
(14). E. Kozhahmetov, B. Karakozov, S. Kurbanbekov, Key Engineering Materials 743 (2017) 41‒44. Crossref
(15). K.S. Senkevich, M.M. Serov, O.Z. Umarova, Met. Sci. Heat Treat. 59 (2017) 66‒69. Crossref
(16). Ye. Kozhakhmetov, M. Skakov, W. Wieleba, Sh. Kurbanbekov, N. Mukhamedova, AIMS Materials Science 7 (2020) 182‒191. Crossref
(17). Ye. Kozhakhmetov, M. Skakov, N. Mukhamedova, Sh. Kurbanbekov, Sh. Ramankulov, W. Wojciech, Mater. Test. 63 (2021) 119‒123. Crossref
(18). J. Jia, W. Sun, W. Peng, Z. Yang, Y. Xu, X. Zhong, W. Liu, J. Luo, Adv. Powder Technol. 3 (2020) 1963‒1974. Crossref
(19). O. Kaipoldayev, Ye. Mukhametkarimov, R. Nemkaeva, G. Baigarinova, M. Aitzhanov, A. Muradov, N. Guseinov, Eurasian Chem.- Technol. J. 19 (2017) 197‒200. Crossref
(20). C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, Metall. Mater. Trans. A 279 (2000) 118–129. Crossref
(21). G.-H. Chen, C. Suryanarayana, F.H.S. Froes, Metall. Mater. Trans. A 26 (1995) 379–1387. Crossref
(22). G. Wang, J. Yang, X. Jiao, Mat. Sci. Eng. A-Struct. 654 (2016) 69–76. DCrossref
(23). J. Kundu, A. Chakraborty, S. Kundu, Weld. World 64 (2020) 2129–2143. Crossref
(24). H. Zhang, N. Yan, H. Liang, Y. Liu, J. Mater. Sci. Technol. 80 (2021) 203–216. Crossref
(25). Y. He, W. Luo, Y. Du, M. Wu, K. Wang, X. Liu, R. Hu, MATEC Web of Conferences 321 (2020) 11064. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.