Powder Composition Structurization of the Ti-25Al-25Nb (at.%) System upon Mechanical Activation and Subsequent Spark Plasma Sintering

Authors

  • Ye. А. Kozhakhmetov D. Serikbayev East Kazakhstan Technical University, 69 Protozanov str., Ust-Kamenogorsk, Kazakhstan
  • М. K. Skakov National Nuclear Center of the Republic of Kazakhstan, 2 Beybit Atom str., Kurchatov, Kazakhstan
  • Sh. R. Kurbanbekov H.A. Yassawi International Kazakh-Turkish University, 29 Bekzat Sattarkhanov ave., Turkistan, Kazakhstan
  • N. M. Mukhamedov Institute of Atomic Energy Branch of the National Nuclear Center of the Republic of Kazakhstan,10 Beybit Atom str., Kurchatov, Kazakhstan
  • N. Ye. Mukhamedov Institute of Atomic Energy Branch of the National Nuclear Center of the Republic of Kazakhstan,10 Beybit Atom str., Kurchatov, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1032

Keywords:

Ti-Al-Nb system, mechanical activation, spark plasma sintering (SPS), microstructure, composite particles

Abstract

 The results of a study of the microstructure evolution of pre-mechanically activated elementary powders based on the Ti-25Al-25Nb (at.%) compositions differing in the particle size of the aluminum (Al) component are presented. It was found that during the mechanical activation, most of the Al was dissolved in the Ti and Nb lattices by interpenetration with the formation of solid solutions (Ti, Al) and (Nb, Al). It has been established that an increase in temperature to 1400 °C, when sintering powder materials based on the Ti-Al-Nb system, leads to a sharp increase in the temperature of Al particles, as a result of the melting of which it is impossible to control the phase formation, which ultimately leads to the difficulty of obtaining the required product. It was determined that in the process of spark-plasma sintering of mechanically activated compositions, intermetallic compounds are formed based on phases ‒ α2, B2 and O, and with an increase in the sintering temperature, their morphology and distribution in the alloy volume change.

References

(1). Pareek, R. Dom, J. Gupta, J. Chandran, V. Adepu, P.H. Borse, Materials Science for Energy Technologies 3 (2020) 319–327. Crossref

(2). J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energ. 44 (2019) 15072–15086. Crossref

(3). E. Boateng, A. Chen, Materials Today Advances 6 (2020) 2–11. Crossref

(4). M. Nagpa, R. Kakkar, Int. J. Hydrogen Energ. 43 (2018) 12168–12188. Crossref

(5). Sh. Kurbanbekov, М. Skakov, V. Baklanov B. Karakozov, Mater. Test. 59 (2017) 1033–1036. Crossref

(6). J. Coleto, J. Goni, P. Egizabal, M. García de Cortázar, G. Lilly, X. Sainz, L. Pambaguian, Materials Science Forum 426-432 (2003) 2145–2150. Crossref

(7). J. Shen, A. Feng, Acta Metall. Sin. 49 (2013) 1286–1294. Crossref

(8). Yong Huang, Yongchang Liu, Chong Li, Zongqing Ma, Liming Yu, Huijun Li, Vacuum (2019) 209–219. Crossref

(9). H. Fang, R. Chen, X. Chen, Y. Yang, Y. Su, H. Ding, J. Guo, Intermetallics 104 (2019) 43–51. Crossref

(10). Polozov, V. Sufiiarov, A. Kantyukov, N. Razumov, I. Goncharov, T. Makhmutov, A. Silin, A. Kim, K. Starikov, A. Shamshurin, A. Popovich, Addit. Manuf. 34 (2020) 1–14. Crossref

(11). W. Wang, H. Zhou, Q. Wang, Y. Gao, K. Wang, J. Mater. Eng. Perform. 29 (2020) 1686–1695. Crossref

(12). K-H. Sim, G. Wang, J-M. Ju, J. Yang, X. Li, J. Alloy. Compd. 704 (2017) 425–433. Crossref

(13). Kaliyeva, Y. Tileuberdi, L. Galfetti, Y. Ongarbayev, Eurasian Chem.-Technol. J. 22 (2020) 141‒147. Crossref

(14). E. Kozhahmetov, B. Karakozov, S. Kurbanbekov, Key Engineering Materials 743 (2017) 41‒44. Crossref

(15). K.S. Senkevich, M.M. Serov, O.Z. Umarova, Met. Sci. Heat Treat. 59 (2017) 66‒69. Crossref

(16). Ye. Kozhakhmetov, M. Skakov, W. Wieleba, Sh. Kurbanbekov, N. Mukhamedova, AIMS Materials Science 7 (2020) 182‒191. Crossref

(17). Ye. Kozhakhmetov, M. Skakov, N. Mukhamedova, Sh. Kurbanbekov, Sh. Ramankulov, W. Wojciech, Mater. Test. 63 (2021) 119‒123. Crossref

(18). J. Jia, W. Sun, W. Peng, Z. Yang, Y. Xu, X. Zhong, W. Liu, J. Luo, Adv. Powder Technol. 3 (2020) 1963‒1974. Crossref

(19). O. Kaipoldayev, Ye. Mukhametkarimov, R. Nemkaeva, G. Baigarinova, M. Aitzhanov, A. Muradov, N. Guseinov, Eurasian Chem.- Technol. J. 19 (2017) 197‒200. Crossref

(20). C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, Metall. Mater. Trans. A 279 (2000) 118–129. Crossref

(21). G.-H. Chen, C. Suryanarayana, F.H.S. Froes, Metall. Mater. Trans. A 26 (1995) 379–1387. Crossref

(22). G. Wang, J. Yang, X. Jiao, Mat. Sci. Eng. A-Struct. 654 (2016) 69–76. DCrossref

(23). J. Kundu, A. Chakraborty, S. Kundu, Weld. World 64 (2020) 2129–2143. Crossref

(24). H. Zhang, N. Yan, H. Liang, Y. Liu, J. Mater. Sci. Technol. 80 (2021) 203–216. Crossref

(25). Y. He, W. Luo, Y. Du, M. Wu, K. Wang, X. Liu, R. Hu, MATEC Web of Conferences 321 (2020) 11064. Crossref

Downloads

Published

2021-03-25

How to Cite

Kozhakhmetov Y. А., Skakov М. K., Kurbanbekov, S. R., Mukhamedov, N. M., & Mukhamedov, N. Y. (2021). Powder Composition Structurization of the Ti-25Al-25Nb (at.%) System upon Mechanical Activation and Subsequent Spark Plasma Sintering. Eurasian Chemico-Technological Journal, 23(1), 37–44. https://doi.org/10.18321/ectj1032

Issue

Section

Articles