Powder Composition Structurization of the Ti-25Al-25Nb (at.%) System upon Mechanical Activation and Subsequent Spark Plasma Sintering
DOI:
https://doi.org/10.18321/ectj1032Keywords:
Ti-Al-Nb system, mechanical activation, spark plasma sintering (SPS), microstructure, composite particlesAbstract
The results of a study of the microstructure evolution of pre-mechanically activated elementary powders based on the Ti-25Al-25Nb (at.%) compositions differing in the particle size of the aluminum (Al) component are presented. It was found that during the mechanical activation, most of the Al was dissolved in the Ti and Nb lattices by interpenetration with the formation of solid solutions (Ti, Al) and (Nb, Al). It has been established that an increase in temperature to 1400 °C, when sintering powder materials based on the Ti-Al-Nb system, leads to a sharp increase in the temperature of Al particles, as a result of the melting of which it is impossible to control the phase formation, which ultimately leads to the difficulty of obtaining the required product. It was determined that in the process of spark-plasma sintering of mechanically activated compositions, intermetallic compounds are formed based on phases ‒ α2, B2 and O, and with an increase in the sintering temperature, their morphology and distribution in the alloy volume change.
References
(1). Pareek, R. Dom, J. Gupta, J. Chandran, V. Adepu, P.H. Borse, Materials Science for Energy Technologies 3 (2020) 319–327. Crossref DOI: https://doi.org/10.1016/j.mset.2019.12.002
(2). J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Int. J. Hydrogen Energ. 44 (2019) 15072–15086. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2019.04.068
(3). E. Boateng, A. Chen, Materials Today Advances 6 (2020) 2–11. Crossref DOI: https://doi.org/10.1016/j.mtadv.2019.100022
(4). M. Nagpa, R. Kakkar, Int. J. Hydrogen Energ. 43 (2018) 12168–12188. Crossref DOI: https://doi.org/10.1016/j.ijhydene.2018.04.103
(5). Sh. Kurbanbekov, М. Skakov, V. Baklanov B. Karakozov, Mater. Test. 59 (2017) 1033–1036. Crossref DOI: https://doi.org/10.3139/120.111107
(6). J. Coleto, J. Goni, P. Egizabal, M. García de Cortázar, G. Lilly, X. Sainz, L. Pambaguian, Materials Science Forum 426-432 (2003) 2145–2150. Crossref DOI: https://doi.org/10.4028/www.scientific.net/MSF.426-432.2145
(7). J. Shen, A. Feng, Acta Metall. Sin. 49 (2013) 1286–1294. Crossref DOI: https://doi.org/10.3724/SP.J.1037.2013.00607
(8). Yong Huang, Yongchang Liu, Chong Li, Zongqing Ma, Liming Yu, Huijun Li, Vacuum (2019) 209–219. Crossref DOI: https://doi.org/10.1016/j.vacuum.2018.12.044
(9). H. Fang, R. Chen, X. Chen, Y. Yang, Y. Su, H. Ding, J. Guo, Intermetallics 104 (2019) 43–51. Crossref DOI: https://doi.org/10.1016/j.intermet.2018.10.017
(10). Polozov, V. Sufiiarov, A. Kantyukov, N. Razumov, I. Goncharov, T. Makhmutov, A. Silin, A. Kim, K. Starikov, A. Shamshurin, A. Popovich, Addit. Manuf. 34 (2020) 1–14. Crossref DOI: https://doi.org/10.1016/j.addma.2020.101374
(11). W. Wang, H. Zhou, Q. Wang, Y. Gao, K. Wang, J. Mater. Eng. Perform. 29 (2020) 1686–1695. Crossref DOI: https://doi.org/10.1007/s11665-020-04610-6
(12). K-H. Sim, G. Wang, J-M. Ju, J. Yang, X. Li, J. Alloy. Compd. 704 (2017) 425–433. Crossref DOI: https://doi.org/10.1016/j.jallcom.2017.01.354
(13). Kaliyeva, Y. Tileuberdi, L. Galfetti, Y. Ongarbayev, Eurasian Chem.-Technol. J. 22 (2020) 141‒147. Crossref DOI: https://doi.org/10.18321/ectj962
(14). E. Kozhahmetov, B. Karakozov, S. Kurbanbekov, Key Engineering Materials 743 (2017) 41‒44. Crossref DOI: https://doi.org/10.4028/www.scientific.net/KEM.743.41
(15). K.S. Senkevich, M.M. Serov, O.Z. Umarova, Met. Sci. Heat Treat. 59 (2017) 66‒69. Crossref DOI: https://doi.org/10.1007/s11041-017-0172-3
(16). Ye. Kozhakhmetov, M. Skakov, W. Wieleba, Sh. Kurbanbekov, N. Mukhamedova, AIMS Materials Science 7 (2020) 182‒191. Crossref DOI: https://doi.org/10.3934/matersci.2020.2.182
(17). Ye. Kozhakhmetov, M. Skakov, N. Mukhamedova, Sh. Kurbanbekov, Sh. Ramankulov, W. Wojciech, Mater. Test. 63 (2021) 119‒123. Crossref DOI: https://doi.org/10.1515/mt-2020-0017
(18). J. Jia, W. Sun, W. Peng, Z. Yang, Y. Xu, X. Zhong, W. Liu, J. Luo, Adv. Powder Technol. 3 (2020) 1963‒1974. Crossref DOI: https://doi.org/10.1016/j.apt.2020.02.029
(19). O. Kaipoldayev, Ye. Mukhametkarimov, R. Nemkaeva, G. Baigarinova, M. Aitzhanov, A. Muradov, N. Guseinov, Eurasian Chem.- Technol. J. 19 (2017) 197‒200. Crossref DOI: https://doi.org/10.18321/ectj194
(20). C.J. Boehlert, B.S. Majumdar, V. Seetharaman, D.B. Miracle, Metall. Mater. Trans. A 279 (2000) 118–129. Crossref
(21). G.-H. Chen, C. Suryanarayana, F.H.S. Froes, Metall. Mater. Trans. A 26 (1995) 379–1387. Crossref DOI: https://doi.org/10.1007/BF02647588
(22). G. Wang, J. Yang, X. Jiao, Mat. Sci. Eng. A-Struct. 654 (2016) 69–76. DCrossref DOI: https://doi.org/10.1016/j.msea.2015.12.037
(23). J. Kundu, A. Chakraborty, S. Kundu, Weld. World 64 (2020) 2129–2143. Crossref DOI: https://doi.org/10.1007/s40194-020-00989-x
(24). H. Zhang, N. Yan, H. Liang, Y. Liu, J. Mater. Sci. Technol. 80 (2021) 203–216. Crossref DOI: https://doi.org/10.1016/j.jmst.2020.11.022
(25). Y. He, W. Luo, Y. Du, M. Wu, K. Wang, X. Liu, R. Hu, MATEC Web of Conferences 321 (2020) 11064. Crossref DOI: https://doi.org/10.1051/matecconf/202032111064