Ligand Assisted Control of Photoluminescence in Organometal Perovskite Nanocrystals
DOI:
https://doi.org/10.18321/ectj1078Keywords:
perovskite, methylammonium, halides, photoluminescence, absorption spectroscopyAbstract
Organometal perovskite nanocrystals have shown remarkable properties not only in photovoltaics, but also in light-emitting devices. In this work colloidal nanocrystals of organometal perovskite CH3NH3PbBr3 (MAPBr) with effective visible photoluminescence were synthesized by the ligand assisted reprecipitation method. The studies were carried out by photoluminescence spectroscopy and optical transmission spectroscopy. Analysis of the photoluminescence and transmission spectra showed that by changing the concentration of the ligands oleylamine and octylamine, it is possible to control the size of nanocrystals and the photoluminescence wavelength due to the quantum confinement effect. It was shown that the increase in ligands concentration in MAPBr perovskite nanocrystals (NCs) solutions decreases the width of the peak which indicates a better quality of the obtained nanocrystals. An increase in the band gap indicates a decrease in the size of the nanocrystals. Replacing the ligands in the colloidal perovskite NCs solutions leads to shift of the photoluminescence peak from 456 to 535 nm.
References
(1). Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131 (2009) 6050–6051. Crossref
(2). Best Research-Cell Efficiency Chart. URL
(3). G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T.C. Sum, Nat. Mater. 13 (2014) 476–480. Crossref
(4). Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee, T.-W. Koh, G.D. Scholes, B.P. Rand, Nat. Photonics 11 (2017) 108–115. Crossref
(5). H.C. Wang, Z. Bao, H.Y. Tsai, A.C. Tang, R.S. Liu, Small 14 (2018) 1702433. Crossref
(6). N. Wang, W. Liu, Q. Zhang, Small Methods 2 (2018) 1700380. Crossref
(7). I. Levchuk, P. Herre, M. Brandl, A. Osvet, R. Hock, W. Peukert, P. Schweizer, E. Spiecker, M. Batentschuk, C.J. Brabec, Chem. Commun. 53 (2017) 244–247. Crossref
(8). M.V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D.V. Talapin, C.R. Kagan, V.I. Klimov, A.L. Rogach, P. Reiss, D.J. Milliron, ACS Nano 9 (2015) 1012–1057. Crossref
(9). X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, H. Zeng, Small 13 (2017) 1603996. Crossref
(10). J. Shamsi, P. Rastogi, V. Caligiuri, A.L. Abdelhady, D. Spirito, L. Manna, R. Krahne, ACS Nano 11 (2017) 10206–10213. Crossref
(11). S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, D. Pan, Chem. Commun. 52 (2016) 7265–7268. Crossref
(12). K.-H. Wang, L. Wu, L. Li, H.-B. Yao, H.-S. Qian, S.-H. Yu, Angewandte Chemie 128 (2016) 8468–8472. Crossref
(13). G.C. Papavassiliou, G. Pagona, N. Karousis, G.A. Mousdis, I. Koutselas, A. Vassilakopoulou, J. Mater. Chem. 22 (2012) 8271–8280. Crossref
(14). F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 9 (2015) 4533–4542. Crossref
(15). D. Sapori, M. Kepenekian, L. Pedesseau, C. Katan, J. Even, Nanoscale 8 (2016) 6369–6378. Crossref
(16). A. Kirakosyan, J. Kim, S.W. Lee, I. Swathi, S. G. Yoon, J. Choi, Cryst. Growth Des. 17 (2017) 794–799. Crossref
Downloads
Published
How to Cite
Issue
Section
License
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.