Ligand Assisted Control of Photoluminescence in Organometal Perovskite Nanocrystals

Authors

  • K.S. Sekerbayev Institute Experimental and Theoretical Physics, al-Farabi Kazakh National University, 71 al-Farabi, Almaty, Kazakhstan
  • G.K. Mussabek Institute Experimental and Theoretical Physics, al-Farabi Kazakh National University, 71 al-Farabi, Almaty, Kazakhstan; Institute of Engineering Physics for Biomedicine, Laboratory “Bionanophotonics”, National Research Nuclear University “MEPhI”, 31 Kashirskoe shosse, Moscow, Russia
  • Ye. Shabdan Institute Experimental and Theoretical Physics, al-Farabi Kazakh National University, 71 al-Farabi, Almaty, Kazakhstan
  • Ye.T. Taurbayev Institute Experimental and Theoretical Physics, al-Farabi Kazakh National University, 71 al-Farabi, Almaty, Kazakhstan

DOI:

https://doi.org/10.18321/ectj1078

Keywords:

perovskite, methylammonium, halides, photoluminescence, absorption spectroscopy

Abstract

Organometal perovskite nanocrystals have shown remarkable properties not only in photovoltaics, but also in light-emitting devices. In this work colloidal nanocrystals of organometal perovskite CH3NH3PbBr3 (MAPBr) with effective visible photoluminescence were synthesized by the ligand assisted reprecipitation method. The studies were carried out by photoluminescence spectroscopy and optical transmission spectroscopy. Analysis of the photoluminescence and transmission spectra showed that by changing the concentration of the ligands oleylamine and octylamine, it is possible to control the size of nanocrystals and the photoluminescence wavelength due to the quantum confinement effect. It was shown that the increase in ligands concentration in MAPBr perovskite nanocrystals (NCs) solutions decreases the width of the peak which indicates a better quality of the obtained nanocrystals. An increase in the band gap indicates a decrease in the size of the nanocrystals. Replacing the ligands in the colloidal perovskite NCs solutions leads to shift of the photoluminescence peak from 456 to 535 nm.

References

(1). Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131 (2009) 6050–6051. Crossref

(2). Best Research-Cell Efficiency Chart. URL

(3). G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T.C. Sum, Nat. Mater. 13 (2014) 476–480. Crossref

(4). Z. Xiao, R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee, T.-W. Koh, G.D. Scholes, B.P. Rand, Nat. Photonics 11 (2017) 108–115. Crossref

(5). H.C. Wang, Z. Bao, H.Y. Tsai, A.C. Tang, R.S. Liu, Small 14 (2018) 1702433. Crossref

(6). N. Wang, W. Liu, Q. Zhang, Small Methods 2 (2018) 1700380. Crossref

(7). I. Levchuk, P. Herre, M. Brandl, A. Osvet, R. Hock, W. Peukert, P. Schweizer, E. Spiecker, M. Batentschuk, C.J. Brabec, Chem. Commun. 53 (2017) 244–247. Crossref

(8). M.V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D.V. Talapin, C.R. Kagan, V.I. Klimov, A.L. Rogach, P. Reiss, D.J. Milliron, ACS Nano 9 (2015) 1012–1057. Crossref

(9). X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu, H. Zeng, Small 13 (2017) 1603996. Crossref

(10). J. Shamsi, P. Rastogi, V. Caligiuri, A.L. Abdelhady, D. Spirito, L. Manna, R. Krahne, ACS Nano 11 (2017) 10206–10213. Crossref

(11). S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang, D. Pan, Chem. Commun. 52 (2016) 7265–7268. Crossref

(12). K.-H. Wang, L. Wu, L. Li, H.-B. Yao, H.-S. Qian, S.-H. Yu, Angewandte Chemie 128 (2016) 8468–8472. Crossref

(13). G.C. Papavassiliou, G. Pagona, N. Karousis, G.A. Mousdis, I. Koutselas, A. Vassilakopoulou, J. Mater. Chem. 22 (2012) 8271–8280. Crossref

(14). F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano 9 (2015) 4533–4542. Crossref

(15). D. Sapori, M. Kepenekian, L. Pedesseau, C. Katan, J. Even, Nanoscale 8 (2016) 6369–6378. Crossref

(16). A. Kirakosyan, J. Kim, S.W. Lee, I. Swathi, S. G. Yoon, J. Choi, Cryst. Growth Des. 17 (2017) 794–799. Crossref

Downloads

Published

2021-09-22

How to Cite

Sekerbayev, K., Mussabek, G., Shabdan, Y., & Taurbayev, Y. (2021). Ligand Assisted Control of Photoluminescence in Organometal Perovskite Nanocrystals. Eurasian Chemico-Technological Journal, 23(2), 89–93. https://doi.org/10.18321/ectj1078

Issue

Section

Articles