Optical Radiation from the Sputtered Species under Excitation of Ternary Mixtures of Noble Gases by the 6Li(n,α)3H Nuclear Reaction Products

  • K. Samarkhanov Institute of Atomic Energy Branch of the National Nuclear Center of the Republic of Kazakhstan, 10 Beybit Atom str., Kurchatov, Kazakhstan
  • M. Khasenov Institute of Atomic Energy Branch of the National Nuclear Center of the Republic of Kazakhstan, 10 Beybit Atom str., Kurchatov, Kazakhstan; School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan, Kazakhstan
  • E. Batyrbekov National Nuclear Center of the Republic of Kazakhstan, 2 Beybit Atom str., Kurchatov, Kazakhstan
  • Yu. Gordienko Institute of Atomic Energy Branch of the National Nuclear Center of the Republic of Kazakhstan, 10 Beybit Atom str., Kurchatov, Kazakhstan
  • Yu. Baklanova Institute of Atomic Energy Branch of the National Nuclear Center of the Republic of Kazakhstan, 10 Beybit Atom str., Kurchatov, Kazakhstan
  • I. Kenzhina al-Farabi Kazakh National University, 71 al-Farabi Ave., Almaty, Kazakhstan
  • Ye. Tulubayev Institute of Atomic Energy Branch of the National Nuclear Center of the Republic of Kazakhstan, 10 Beybit Atom str., Kurchatov, Kazakhstan
  • I. Karambayeva Institute of Atomic Energy Branch of the National Nuclear Center of the Republic of Kazakhstan, 10 Beybit Atom str., Kurchatov, Kazakhstan
Keywords: nuclear reaction, sputtering, noble gases, alkali metals, level population

Abstract

The present paper examines the luminescence of ternary Ar-Kr-Xe and Ne-Ar-Kr mixtures of noble gases in the spectral range from 300 to 970 nm, excited by the 6Li(n,α)3H nuclear reaction products in the core of a nuclear reactor. A thin layer of lithium applied on the walls of the experimental device, stabilized in the matrix of the capillary-porous structure, serves as a source of gas excitation. During in-pile tests, conducted at the IVG.1M research reactor, thermal neutrons interact via the 6Li(n,α)3H reaction, and the emergent alpha particles with a kinetic energy of 2.05 MeV and tritium ions with a kinetic energy of 2.73 MeV excite gaseous medium. The study was carried out in a wide temperature range. The temperature dependence of the intensity of the emission of the atoms of noble gases and alkali metals, heteronuclear ionic molecules of noble gases were studied. The obtained values of the activation energy of the emission process 1.58 eV for lithium and 0.72 eV for potassium agree well with the known values of evaporation energy. Excitation of alkali metals atoms occurs consequently of the Penning process of alkali metals atoms on noble gas atoms in the 1s-states and further ion-molecular reactions.

References

(1). S.P. Melnikov, A.A. Sinyanskii, A.N. Sizov, G.H. Miley, Lasers with Nuclear Pumping. Springer, New York, NY, USA, 2015, 455 p. Crossref

(2). M. Prelas, Nuclear Pumped Lasers. Springer International Publishing Switzerland, 2016, 417 p. Crossref

(3). Yu.N. Gordienko, E.G. Batyrbekov, M.K. Skakov, Yu.V. Ponkratov, M.U. Khasenov, Zh.A. Zaurbekova, N.I. Barsukov, T.V. Kulsartov, Ye.Yu. Tulubayev, J. Phys.: Conf. Ser. 747 (2016) 012012. Crossref

(4). K.K. Samarkhanov, E.G. Batyrbekov, M.U. Khasenov, Yu.N. Gordienko, Zh.A. Zaurbekova, V.S. Bochkov, Eurasian Chem.-Technol. J. 21 (2019) 115–123. Crossref

(5). Yu.N. Gordienko, M.U. Khasenov, E.G. Batyrbekov, K.K. Samarkhanov, Yu.V. Ponkratov, A.K. Amrenov, Laser Part. Beams 37 (2019) 18–24. Crossref

(6). E. Batyrbekov, M. Khasenov, Yu. Gordienko, K. Samarkhanov, Yu. Ponkratov, J. Lumin. 220 (2020) 116973. Crossref

(7). K. Jensen, E. Veje, Z. Physik 269 (1974) 293– 300. Crossref

(8). A.I. Mis’kevich, Quantum Electron. 32 (2002) 803–808. Crossref

(9). R. Kelly, Phys. Rev. B 25 (1982) 700–712. Crossref

(10). A.I. Mis’kevich, L. Tao, Opt. Spectrosc. 105 (2008) 691–698. Crossref

(11). A.I. Mis’kevich, L. Tao, Tech. Phys. 55 (2010) 264–269. Crossref

(12). K. Samarkhanov, M. Khasenov, E. Batyrbekov, I. Kenzhina, Ye. Sapatayev, V. Bochkov, Sci. Technol. Nucl. Ins. 2020 (2020) ID 8891891. Crossref

(13). Y. Tanaka, K. Yoshino, D.E. Freeman, J. Chem. Phys. 62 (1975) 4484‒4496. Crossref

(14). M. Khasenov, Nucl. Instrum. Meth. B 482 (2020) 45‒52. Crossref

(15). R.A. Irkimbekov, L.K. Zhagiparova, V.M. Kotov, A.D. Vurim, V.S. Gnyrya, Atom. Energy 127 (2019) 69–76. Crossref

(16). I.E. Lyublinskij, A.V. Vertkov, Innovative designs and technologies of nuclear power. IV International scientific and technical conference. Book of abstracts, Moscow, 2016, p. 241-243.

(17). D.R. Lide, CRC handbook of chemistry and physics, 84th ed., CRC Press, 2003.

(18). D. Henriques, V. Motalov, L. Bencze, T. Markus, ECS Trans. 46 (2013) 303‒312. Crossref

(19). I.S. Grigor’ev, E.Z. Meilikhov (Eds). Fizicheskie Velichiny [Handbook of Physical Quantities]. Moscow: Energoatomizdat, 1991. 289 p. (In Russian).

(20). W. Assmann, M. Toulemonde, C. Trautmann, (2007) Electronic Sputtering with Swift Heavy Ions. In: Sputtering by Particle Bombardment. Topics in Applied Physics, vol 110. Springer, Berlin, Heidelberg. Crossref

Published
2021-08-30
How to Cite
[1]
K. Samarkhanov, “Optical Radiation from the Sputtered Species under Excitation of Ternary Mixtures of Noble Gases by the 6Li(n,α)3H Nuclear Reaction Products”, Eurasian Chem.-Technol. J., vol. 23, no. 2, pp. 95-102, Aug. 2021.
Section
Articles