Optical Radiation from the Sputtered Species under Excitation of Ternary Mixtures of Noble Gases by the 6Li(n,α)3H Nuclear Reaction Products
DOI:
https://doi.org/10.18321/ectj1079Keywords:
nuclear reaction, sputtering, noble gases, alkali metals, level populationAbstract
The present paper examines the luminescence of ternary Ar-Kr-Xe and Ne-Ar-Kr mixtures of noble gases in the spectral range from 300 to 970 nm, excited by the 6Li(n,α)3H nuclear reaction products in the core of a nuclear reactor. A thin layer of lithium applied on the walls of the experimental device, stabilized in the matrix of the capillary-porous structure, serves as a source of gas excitation. During in-pile tests, conducted at the IVG.1M research reactor, thermal neutrons interact via the 6Li(n,α)3H reaction, and the emergent alpha particles with a kinetic energy of 2.05 MeV and tritium ions with a kinetic energy of 2.73 MeV excite gaseous medium. The study was carried out in a wide temperature range. The temperature dependence of the intensity of the emission of the atoms of noble gases and alkali metals, heteronuclear ionic molecules of noble gases were studied. The obtained values of the activation energy of the emission process 1.58 eV for lithium and 0.72 eV for potassium agree well with the known values of evaporation energy. Excitation of alkali metals atoms occurs consequently of the Penning process of alkali metals atoms on noble gas atoms in the 1s-states and further ion-molecular reactions.
References
(1). S.P. Melnikov, A.A. Sinyanskii, A.N. Sizov, G.H. Miley, Lasers with Nuclear Pumping. Springer, New York, NY, USA, 2015, 455 p. Crossref DOI: https://doi.org/10.1007/978-3-319-08882-2
(2). M. Prelas, Nuclear Pumped Lasers. Springer International Publishing Switzerland, 2016, 417 p. Crossref DOI: https://doi.org/10.1007/978-3-319-19845-3_4
(3). Yu.N. Gordienko, E.G. Batyrbekov, M.K. Skakov, Yu.V. Ponkratov, M.U. Khasenov, Zh.A. Zaurbekova, N.I. Barsukov, T.V. Kulsartov, Ye.Yu. Tulubayev, J. Phys.: Conf. Ser. 747 (2016) 012012. Crossref DOI: https://doi.org/10.1088/1742-6596/747/1/012012
(4). K.K. Samarkhanov, E.G. Batyrbekov, M.U. Khasenov, Yu.N. Gordienko, Zh.A. Zaurbekova, V.S. Bochkov, Eurasian Chem.-Technol. J. 21 (2019) 115–123. Crossref DOI: https://doi.org/10.18321/ectj821
(5). Yu.N. Gordienko, M.U. Khasenov, E.G. Batyrbekov, K.K. Samarkhanov, Yu.V. Ponkratov, A.K. Amrenov, Laser Part. Beams 37 (2019) 18–24. Crossref DOI: https://doi.org/10.1017/S0263034619000120
(6). E. Batyrbekov, M. Khasenov, Yu. Gordienko, K. Samarkhanov, Yu. Ponkratov, J. Lumin. 220 (2020) 116973. Crossref DOI: https://doi.org/10.1016/j.jlumin.2019.116973
(7). K. Jensen, E. Veje, Z. Physik 269 (1974) 293– 300. Crossref DOI: https://doi.org/10.1007/BF01668696
(8). A.I. Mis’kevich, Quantum Electron. 32 (2002) 803–808. Crossref DOI: https://doi.org/10.1070/QE2002v032n09ABEH002295
(9). R. Kelly, Phys. Rev. B 25 (1982) 700–712. Crossref DOI: https://doi.org/10.1103/PhysRevB.25.700
(10). A.I. Mis’kevich, L. Tao, Opt. Spectrosc. 105 (2008) 691–698. Crossref DOI: https://doi.org/10.1134/S0030400X08110088
(11). A.I. Mis’kevich, L. Tao, Tech. Phys. 55 (2010) 264–269. Crossref DOI: https://doi.org/10.1134/S1063784210020179
(12). K. Samarkhanov, M. Khasenov, E. Batyrbekov, I. Kenzhina, Ye. Sapatayev, V. Bochkov, Sci. Technol. Nucl. Ins. 2020 (2020) ID 8891891. Crossref DOI: https://doi.org/10.1155/2020/8891891
(13). Y. Tanaka, K. Yoshino, D.E. Freeman, J. Chem. Phys. 62 (1975) 4484‒4496. Crossref DOI: https://doi.org/10.1063/1.430356
(14). M. Khasenov, Nucl. Instrum. Meth. B 482 (2020) 45‒52. Crossref DOI: https://doi.org/10.1016/j.nimb.2020.09.004
(15). R.A. Irkimbekov, L.K. Zhagiparova, V.M. Kotov, A.D. Vurim, V.S. Gnyrya, Atom. Energy 127 (2019) 69–76. Crossref DOI: https://doi.org/10.1007/s10512-019-00587-1
(16). I.E. Lyublinskij, A.V. Vertkov, Innovative designs and technologies of nuclear power. IV International scientific and technical conference. Book of abstracts, Moscow, 2016, p. 241-243.
(17). D.R. Lide, CRC handbook of chemistry and physics, 84th ed., CRC Press, 2003.
(18). D. Henriques, V. Motalov, L. Bencze, T. Markus, ECS Trans. 46 (2013) 303‒312. Crossref DOI: https://doi.org/10.1149/04601.0303ecst
(19). I.S. Grigor’ev, E.Z. Meilikhov (Eds). Fizicheskie Velichiny [Handbook of Physical Quantities]. Moscow: Energoatomizdat, 1991. 289 p. (In Russian).
(20). W. Assmann, M. Toulemonde, C. Trautmann, (2007) Electronic Sputtering with Swift Heavy Ions. In: Sputtering by Particle Bombardment. Topics in Applied Physics, vol 110. Springer, Berlin, Heidelberg. Crossref DOI: https://doi.org/10.1007/978-3-540-44502-9_7