Ni/Cr-[α-SiW12O40] Layered Double Hydroxide as Effective Adsorbent of Iron(II) From Aqueous Solution

Authors

  • A. Lesbani Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32 Ogan Ilir 30662, Indonesia; Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32 Ogan Ilir 30662, Indonesia
  • M.F. Azmi Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32 Ogan Ilir 30662, Indonesia
  • N.R. Palapa Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32 Ogan Ilir 30662, Indonesia
  • T. Taher Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32 Ogan Ilir 30662, Indonesia
  • R. Andreas Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Jenderal Soedirman, Jl. Dr. Soeparno, Karangwangkal, Purwokerto Utara, Banyumas, 53123, Indonesia
  • R. Mohadi Graduate School of Mathematics and Natural Sciences, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32 Ogan Ilir 30662, Indonesia; Research Center of Inorganic Materials and Coordination Complexes, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Jl. Palembang Prabumulih Km. 32 Ogan Ilir 30662, Indonesia

DOI:

https://doi.org/10.18321/ectj1080

Abstract

Layered double hydroxide (LDH) Ni/Cr intercalated [α-SiW12O40]4- has been prepared using the coprecipitation method. Materials were characterized by X-ray, FTIR, BET, and pHpzc analyses. Material Ni/Cr-[α-SiW12O40] LDHs exhibited a high surface area 98.986 m2 g-1 from 11.030 m2 g-1 for Ni/Cr LDH where the interlayer space was an increase from 7.99 to 10.87 Å with indicated that high crystallinity. Ni/Cr-[α-SiW12O40] LDHs showed higher adsorption capacity for iron(II) is up to 250 mg g-1. Adsorption of iron(II) on LDHs has an endothermic process and classify as physical adsorption.

References

(1). M. Daud, A. Hai, F. Banat, M.B. Wazir, M. Habib, G. Bharath, M.A. Al-Harthi, J. Mol. Liq. 288 (2019) 110989. Crossref DOI: https://doi.org/10.1016/j.molliq.2019.110989

(2). Y. Lu, B. Jiang, L. Fang, F. Ling, J. Gao, Fang Wu, Xihua Zhang, Chemosphere 152 (2016) 415– 422. Crossref DOI: https://doi.org/10.1016/j.chemosphere.2016.03.015

(3). J.D. Castro-Castro, I.F. Macías-Quiroga, G.I. Giraldo-Gómez, N.R. Sanabria-González, Sci. World J. 2020, ID 3628163. Crossref DOI: https://doi.org/10.1155/2020/3628163

(4). L.N.H. Arakaki, V.L.S. Augusto Filha, K.S. de Sousa, F.P. Aguiar, M.G. da Fonseca, J.G.P. Espínola, Thermochim. Acta 440 (2006) 176– 180. Crossref DOI: https://doi.org/10.1016/j.tca.2005.11.004

(5). N. Kataria, V.K. Garg, J. Mol. Liq. 271 (2018) 228–239. Crossref DOI: https://doi.org/10.1016/j.molliq.2018.08.135

(6). N.R. Palapa, T. Taher, A. Wijaya, A. Lesbani, Science and Technology Indonesia 6 (2021) 209–217. Crossref DOI: https://doi.org/10.26554/sti.2021.6.3.209-217

(7). R. Kumar, M.A. Laskar, I.F. Hewaidy, M.A. Barakat, Earth Syst. Environ. 3 (2019) 83–93. Crossref DOI: https://doi.org/10.1007/s41748-018-0085-3

(8). S.Y. Cheng, P.L. Show, B.F. Lau, J.S. Chang, T.C. Ling, Trends Biotechnol. 37 (2019) 1255– 1268. Crossref DOI: https://doi.org/10.1016/j.tibtech.2019.04.007

(9). L.M. Estiaty, Indonesian Journal of Geology and Mining 22 (2012). Crossref DOI: https://doi.org/10.14203/risetgeotam2012.v22.63

(10). H. Zhou, Z. Jiang, S. Wei, Appl. Clay Sci. 153 (2018) 29–37. Crossref DOI: https://doi.org/10.1016/j.clay.2017.11.033

(11). Q.Ul Ain, H. Zhang, M. Yaseen, U. Rasheed, K. Liu, S. Subhan Z. Tong, J. Clean. Prod. 247 (2020) 119088. Crossref DOI: https://doi.org/10.1016/j.jclepro.2019.119088

(12). S. Samuei, F.A. Rad, Z. Rezvani, Appl. Clay Sci. 184 (2020) 105388. Crossref DOI: https://doi.org/10.1016/j.clay.2019.105388

(13). S. Ma, J. Wang, L. Du, Y. Sun, Q. Gu, G. Sun, X. Yang, J. Colloid Interf. Sci. 393 (2013) 29– 35. Crossref DOI: https://doi.org/10.1016/j.jcis.2012.10.015

(14). X. Duan, J. Lu, D.G. Evans, Modern Inorganic Synthetic Chemistry 2011, 375–404. Crossref DOI: https://doi.org/10.1016/B978-0-444-53599-3.10017-4

(15). M.J. Barnabas, S. Parambadath, A. Mathew, S.S. Park, A. Vinu, C.-S. Ha, J. Solid State Chem. 233 (2016) 133–142. Crossref DOI: https://doi.org/10.1016/j.jssc.2015.10.001

(16). L. Ma, Q. Wang, S.M. Islam, Y. Liu, S. Ma, M.G. Kanatzidis, J. Am. Chem. Soc. 138 (2016) 2858–2866. Crossref DOI: https://doi.org/10.1021/jacs.6b00110

(17). B. Ou, J. Wang, Y. Wu, S. Zhao, Z. Wang, Chem. Eng. J. 380 (2020) 122600. Crossref DOI: https://doi.org/10.1016/j.cej.2019.122600

(18). M. Laipan, H. Fu, R. Zhu, L. Sun, J. Zhu, H. He, Sci. Rep. 7 (2017) 7277. Crossref DOI: https://doi.org/10.1038/s41598-017-07775-8

(19). M. Huang, Y. Zhang, W. Xiang, T. Zhou, X. Wu, J. Mao, J. Environ. Sci.-China 85 (2019) 56–65. Crossref DOI: https://doi.org/10.1016/j.jes.2019.04.011

(20). S. Sasaki, S. Aisawa, H. Hirahara, A. Sasaki, H. Nakayama, E. Narita, J. Eur. Ceram. Soc. 26 (2006) 655–659. Crossref DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.06.021

(21). M. Oktriyanti, N.R. Palapa, A. Lesbani, J. Ecol. Eng. 21 (2020) 63–71. Crossref DOI: https://doi.org/10.12911/22998993/122190

(22). W. Tian, X. Kong, M. Jiang, X. Lei, X. Duan, Mater. Lett. 175 (2016) 110–113. Crossref DOI: https://doi.org/10.1016/j.matlet.2016.03.141

(23). T. Taher, M.M. Christina, M. Said, N. Hidayati, F. Ferlinahayati, A. Lesbani, Bull. Chem. React. Eng. Catal. 14 (2019) 260–267. Crossref DOI: https://doi.org/10.9767/bcrec.14.2.2880.260-267

(24). M.A. de Bittencourt, A.M. Novack, J.A. Scherer Filho, L.P. Mazur, B.A. Marinho, A. da Silva, A.A. U. de Souza, S.M.A. Guelli U. de Souza, J. Clean. Prod. 268 (2020) 122164. Crossref DOI: https://doi.org/10.1016/j.jclepro.2020.122164

(25). W.S.W. Ngah, S. Ab Ghani, A. Kamari, Bioresource Technol. 96 (2005) 443–450. Crossref DOI: https://doi.org/10.1016/j.biortech.2004.05.022

(26). A. Lesbani, N. Normah, N.R. Palapa, T. Taher, R. Andreas, R. Mohadi, Molekul 15 (2020) 149– 157. Crossref DOI: https://doi.org/10.20884/1.jm.2020.15.3.600

(27). Y. Hanifah, N.R. Palapa, Sci. Technol. Indones. 1 (2016) 16–19. Crossref DOI: https://doi.org/10.26554/sti.2016.1.1.16-19

(28). A. Lesbani, H. Hensen, T. Taher, N. Hidayati, R. Mohadi, R. Andreas, AIP Conf. Proc. 2026 (2018) 020011. Crossref DOI: https://doi.org/10.1063/1.5064971

(29). S. Tosonian, C.J. Ruiz, A. Rios, E. Frias, J.F. Eichler, Open Journal of Inorganic Chemistry 3 (2013) 7–13. Crossref DOI: https://doi.org/10.4236/ojic.2013.31002

(30). K.A. Ibrahimova, A.A. Azizov, O.O. Balayeva, R.M. Alosmanov, S.C. Mammadyarova, Mendeleev Commun. 31 (2021) 100–103. Crossref DOI: https://doi.org/10.1016/j.mencom.2021.01.031

(31). N.R. Palapa, N. Juleanti, N. Normah, T. Taher, A. Lesbani, Bull. Chem. React. Eng. Catal. 15 (2020) 653–661. Crossref DOI: https://doi.org/10.9767/bcrec.15.3.8371.653-661

(32). T. Taher, Y. Irianty, R. Mohadi, M. Said, R. Andreas, A. Lesbani, Indones. J. Chem. 19 (2019) 873–881. Crossref DOI: https://doi.org/10.22146/ijc.36447

(33). G. Zhao, L. Liu, C. Li, T. Zhang, T. Yan, J. Yu, X. Jiang, F. Jiao, J. Photochem. Photobiol. A Chem. 367 (2018) 302–311. Crossref DOI: https://doi.org/10.1016/j.jphotochem.2018.08.048

(34). P.M.S.B.N. Siregar, N.R. Palapa, A. Wijaya, E.S. Fitri, A. Lesbani, Sci. Technol. Indones. 6 (2021) 85–95. Crossref DOI: https://doi.org/10.26554/sti.2021.6.2.85-95

Downloads

Published

30-08-2021

How to Cite

Lesbani, A., Azmi, M., Palapa, N., Taher, T., Andreas, R., & Mohadi, R. (2021). Ni/Cr-[α-SiW12O40] Layered Double Hydroxide as Effective Adsorbent of Iron(II) From Aqueous Solution. Eurasian Chemico-Technological Journal, 23(2), 103–110. https://doi.org/10.18321/ectj1080

Issue

Section

Article