Modeling and Simulation of Janus-like Nanoparticles Formation by Solid-Gas Exothermic Reactions

Authors

  • A.A. Markov Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow 119526, Russia
  • K.S. Martirosyan Department of Physics and Astronomy, University of Texas at Rio Grande Valley, Brownsville, TX 78520, USA

DOI:

https://doi.org/10.18321/ectj1098

Keywords:

ceramic materials, CCSO, Janus-like particles, porosity development

Abstract

Theoretical model for the simulation of synthesis of Janus-like particles (JP) consisting two different phases using the Carbon Combustion Synthesis of Oxides (CCSO) is presented. The model includes the variation of sample initial porosity, carbon concentration and oxygen flow rate used to predict the formation of JP features. The two temperature (2T) combustion model of chemically active submicron-dispersed mixture of two phases including ferroelectric and ferromagnetic was implemented and assessed by using the experimentally estimated activation energy of 112±3.3 kJ/mol and combustion temperature. The experimental values allowed to account the thermal and concentration expansion effect along with the dispersion by the slip-jump simulation for high Knudsen numbers. The model predicted that the smaller initial porosity of the combustion media creates higher formation rate of Janus-like particles. The simulation of slippage and jumps of the gas temperature allowed the scale-bridging between macro- and micro- structures.

References

(1). C. Casagrande, P. Fabre, E. Raphaël, M. Veyssie, Europhys Lett. 9 (1989) 251–255. Crossref

(2). S. Pradhan, L. Xu, S. Chen, Adv. Funct. Mater. 17 (2007) 2385–2392. Crossref

(3). S. Granick, S. Jiang, Q. Chen, Phys. Today 62 (2009) 68–69. Crossref

(4). A. Walther, A. Müller, Chem. Rev. 113 (2013) 5194–5261. Crossref

(5). N. Zhao, M. Gao, Adv. Mater. 21 (2009) 184– 187. Crossref

(6). J. Zhang, B.A. Grzybowski, S. Granick, Langmuir 33 (2017) 6964–6977. Crossref

(7). T.C. Le, J. Zhai, W.-H. Chiu, P.A. Tran, N. Tran, Int. J. Nanomed. 14 (2019) 6749–6777. Crossref

(8). C. Trevino De Leo, G.C. Dannangoda, M.A. Hobosyan, J.T. Held, F. Safi Samghabadi, M. Khodadadi, D. Litvinov, K.A. Mkhoyan, K.S. Martirosyan, Ceram. Int. 47 (2021) 5415–5422. Crossref

(9). M. Nair, R. Guduru, P. Liang, J. Hong, V. Sagar, S. Khizroev, Nat. Commun. 4 (2013) 2729. Crossref

(10). A. Perro, S. Reculusa, S. Ravaine, E. Bourgeat- Lami, E. Duguet, J. Mater. Chem. 15 (2005) 3745–3760. Crossref

(11). S. Betal, A.K. Saha, E. Ortega, M. Dutta, A.K. Ramasubramanian, A.S. Bhalla, R. Guo, Sci. Rep. 8 (2018) 1755. Crossref

(12). F.S. Samghabadi, L. Chang, M. Khodadadi, K.S. Martirosyan, D. Litvinov, APL Mater. 9 (2021) 021104. Crossref

(13). G.E. Karniadakis, A. Beskok, N.R. Aluru (2005). Microflows and Nanoflows Fundamentals and Simulation. In Interdisciplinary Applied Mathematics (pp. 1–61). (Interdisciplinary Applied Mathematics; Vol. 29). Springer.

(14). J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Science 312 (2006) 1034–1037. Crossref

(15). J. Eijkel, Lab. Chip. 7 (2007) 299–301. Crossref

(16). A.I. Erofeev, M.N. Kogan, O.G. Fridlender, Fluid Dynam. 45 (2010) 134–146. Crossref

(17). M. Kurzyp, C.A. Mills, R. Rhodes, T.R. Pozegic, C.T.G. Smith, M.J. Beliatis, L.J. Rozanski, A. Werbowy, S.R.P. Silva, J. Phys. D: Appl. Phys. 48 (2015) 115305. Crossref

(18). V.Ya. Rudyak, A.A. Belkin, V.V. Egorov, D.A. Ivanov, Nanosystems: Phys. Chem. Math. [Nanosistemy: fizika, himiâ, matematika] 2 (2011) 100–112 (in Russian).

(19). A.A. Markov, Comput. Fluids 99 (2014) 83‒92. Crossref

(20). A.A. Markov, I.A. Filimonov, K.S. Martirosyan, J. Comput. Phys. 231 (2012) 6714–6724. Crossref

(21). A.A. Markov, М.А. Hobosyan, K.S. Martirosyan, Physical-Chemical Kinetics in Gas Dynamics 16 (2015). URL

(22). Y. Daghighi, Y. Gao, D. Li, Electrochim. Acta 56 (2011) 4254–4262. Crossref

(23). A.A. Markov. PNRPU Bulletin. Chemical Technology and Biotechnology 2 (2020) 160–177 (in Russian). Crossref

(24). A.A. Markov, M.A. Hobosyan, K.S. Martirosyan, Nanoscience and Technology: An International Journal 6 (2015) 209–222. Crossref

(25). A.A. Markov, I.A. Filimonov, K.S. Martirosyan, Theor. Found. Chem. Eng. 51 (2017) 27–37. Crossref

(26). B.A. Boley, J.H. Weiner, Theory of Thermal Stresses, Dover Publications, 2011, ISBN 10: 0486695794

(27). E.A. Olevsky, Mater. Sci. Eng. R Rep 23 (1998) 41–100. Crossref

(28). S. Whitaker, Chem. Eng. Sci. 28 (1973) 139‒147. Crossref

(29). C.T. Hsu, P. Cheng, Int. J. Heat Mass Transf. 33 (1990) 1587–1597. Crossref

(30). M. Fatehi, M. Kaviany, Int. Heat Mass Transfer. 11 (1997) 2607‒2620. Crossref

(31). A.A.M. Oliveira, M. Kaviany, Prog. Energ. Combust. Sci. 27 (2001) 523‒545. Crossref

(32). F.M. Pereira, A.A.M. Oliveira, F.F. Fachini, J. Fluid Mech. 657 (2010) 285–307. Crossref

(33). J.M.P.Q. Delgado, Chem. Eng. Res. Des. 85 (2007) 1245–1252. Crossref

(34). А.А. Markov, Physical-Chemical Kinetics in Gas Dynamics 20 (2019) 1–14. Crossref

(35). S.N. Sorokova, A.G. Knyazeva, Physical mezomechanics 11 (2008) 95–101 (in Russian).

(36). S.N. Sorokova, A.G. Knyazeva. Related model of sintering the powders of the TI-TIAI3 system. Bulletin of the Tomsk Polytechnic University 314 (2009) 96–101 (in Russian).

(37). А.А. Markov, Physical-Chemical Kinetics in Gas Dynamics 22 (2021) 1–21 (in Russian). Crossref

(38). K.S. Martirosyan, E. Galstyan, S. M. Hossain, Yi-Ju Wang, D. Litvinov, Mater. Scie. Eng. B 176 (2011) 8–13. Crossref

(39). K.S. Martirosyan, D. Luss, Ind. Eng. Chem. Res. 46 (2007) 1492–1499. Crossref

(40). K.S. Martirosyan, M. Iliev, D. Luss, Int. J. Self- Propag. High-Temp. Synth. 16 (2007) 36–45. Crossref

(41). K.S. Martirosyan, L. Chang, J. Rantschler, S. Khizroev, D. Luss, D. Litvinov, IEEE T. Magn. 43 (2007) 3118–3120. Crossref

(42). K.S. Martirosyan, D. Luss, AIChE J. 51 (2005) 2801–2810. Crossref

(43). K.S. Martirosyan, C. Dannangoda, E. Galstyan, D. Litvinov, J. Appl. Phys. 111 (2012) 094311. Crossref

(44). D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics (Second Enlarged and Revised Edition), Translation Editor: J.P. Appleton, Plenum Press, 1969.

Downloads

Published

2021-11-10

How to Cite

Markov, A., & Martirosyan, K. (2021). Modeling and Simulation of Janus-like Nanoparticles Formation by Solid-Gas Exothermic Reactions. Eurasian Chemico-Technological Journal, 23(3), 133–145. https://doi.org/10.18321/ectj1098

Issue

Section

Articles