Determination of Boron, Lithium and Some Metals in Fly Ash by Laser Ablation ‒ Inductively Coupled Plasma ‒ Optical Emission Spectrometry

Authors

  • Roman P. Kolmykov Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia

DOI:

https://doi.org/10.18321/ectj1324

Keywords:

Laser ablation, Fly ash, ICP-OES, Elemental analysis

Abstract

 To avoid potentially harmful wet sample preparation is offered to use laser ablation (LA) ‒ inductively coupled plasma ‒ optical emission spectrometry (ICP-OES) as a method for the elemental analysis of fly ash for boron, lithium, and some metals. For this purpose, synthetic samples were prepared by spiking with dissolved standards. As a result, great stability of calibration curves was achieved. It was found that a particle diameter less than 80 ?m in fly ash is enough to have a satisfying homogeneity for successful calibration in the method of standard additions. The average recovery test for reference materials used in the study was 16–77% of the certified values for the elements observed. The low results might be the effect of spiking with calibration samples in the liquid state. This type of analysis requires further investigation. According to the results of elemental analysis, the content of boron and lithium was determined for ZUK-2 and SO-1, which was not previously noticed in other papers.

References

(1). S. Singh, N.P. Singh, R. Rani, Eur. Chem. Bull. 9 (2020) 360–365. Crossref DOI: https://doi.org/10.17628/ecb.2020.9.360-365

(2). J. Wu, F. Tou, Y. Yang, C. Liu, J.C. Hower, M. Baalousha, G. Wang, M. Liu, M.F. Hochella, Environ. Sci. Technol. 55 (2021) 6644–6654. Crossref DOI: https://doi.org/10.1021/acs.est.1c00434

(3). Y. Itaya, K. Kuninishi, Y. Hashimoto, J. Mater. Cycles. Waste Manag. 24 (2022) 250–258. Crossref DOI: https://doi.org/10.1007/s10163-021-01316-2

(4). N. Rivera, D. Hesterberg, N. Kaur, O.W. Duckworth, Energy Fuels 31 (2017) 9652–9659. Crossref DOI: https://doi.org/10.1021/acs.energyfuels.7b00020

(5). P. Liu, Q. Wang, H. Jung, Y. Tang, Energy Fuels 34 (2020) 14333–14343. Crossref DOI: https://doi.org/10.1021/acs.energyfuels.0c02164

(6). F.E. Huggins, M. Rezaee, R.Q. Honaker, J.C. Hower, Waste Manag. 51 (2016) 105–110. Crossref DOI: https://doi.org/10.1016/j.wasman.2016.02.038

(7). J. Haberl, R. Koralewska, S. Schlumberger, M. Schuster, Waste Manag. 75 (2018) 361–371. Crossref DOI: https://doi.org/10.1016/j.wasman.2018.02.015

(8). M. Xu, Y. Wu, P. Zhang, Z. Liu, Z. Hu, Q. Lu, Environ. Sci. Technol. 56 (2022) 2582–2592. Crossref DOI: https://doi.org/10.1021/acs.est.1c05516

(9). H. Tri, B.M. Petrusa, M. Olvianas, W. Suprapta, F.A. Setiawan, A. Prasetya, Sutijana, F. Anggara, J. Environ. Chem. Engineer. 8 (2020) 104116 Crossref DOI: https://doi.org/10.1016/j.jece.2020.104116

(10). I. Acar, M.J. Atalay, Fuel 180 (2016) 97–105. Crossref DOI: https://doi.org/10.1016/j.fuel.2016.04.013

(11). E.V. Fomenko, N.N. Anshits, N.G. Vasilieva, O.A. Mikhaylova, E.S. Rogovenko, A.M. Zhizhaev, A.G.J.E. Anshits, Energy Fuels 29 (2015) 5390–5403. Crossref DOI: https://doi.org/10.1021/acs.energyfuels.5b01022

(12). P. Liu, R. Huang, Y. Tang, Environ. Sci. Technol. 53 (2019) 5369–5377. Crossref DOI: https://doi.org/10.1021/acs.est.9b00005

(13). M.C. Zuma, P.N. Nomngongo, N. Mketo, Minerals 11 (2021) 1103. Crossref DOI: https://doi.org/10.3390/min11101103

(14). R.L. Thompson, T. Bank, S. Montross, E. Roth, B. Howard, C. Verba, Spectrochim. Acta B 143 (2018) 1–11. Crossref DOI: https://doi.org/10.1016/j.sab.2018.02.009

(15). ASTM D 3682-01 Standard test method for major and minor elements in combustion residues from coal utilization process.

(16). ASTM D 6349-01 Standard test method for determination of major and minor elements in coal and coke by inductively coupled plasma-atomic emission spectrometry.

(17). J.E. Eriksson, T. Khazraie, L. Hupa, TMS Annual Meeting & Exhibition, Springer, Cham., 2018, pp. 253–263. Crossref DOI: https://doi.org/10.1007/978-3-319-72362-4_22

(18). M.H. Piispanen, S.A. Arvilommi, B. Van den Broeck, L.H. Nuutinen, M.S. Tiainen, P.J. Perämäki, R.S. Laitinen, Energy Fuels 23 (2009) 3451–3456. Crossref DOI: https://doi.org/10.1021/ef801037a

(19). ASTM D 3683-94 Standard Test Method for Trace Elements in Coal and Coke Ash by Atomic Absorption.

(20). iTEVA iCAP Software Issue 9.5. Thermo Fisher Scientific Inc. 2011.

(21). A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2021). NIST Atomic Spectra Database (version 5.9), [Online]. Available: URL [Fri Aug 19 2022]. National Institute of Standards and Technology, Gaithersburg, MD. Crossref

(22). C. Yafa, J.G. Farmer, Anal. Chim. Acta 557 (2006) 296–303. Crossref DOI: https://doi.org/10.1016/j.aca.2005.10.043

(23). J. Sysalova, J. Szakova, Environ. Research 101 (2006) 287–293. Crossref DOI: https://doi.org/10.1016/j.envres.2005.10.001

(24). A. Stankova, N. Gilon, L. Dutruch, V. Kanicky, J. Anal. At. Spectrom. 26 (2011) 443–449. Crossref DOI: https://doi.org/10.1039/C0JA00020E

(25). A. Saydut, Energy Explor. Exploit. 28 (2010) 105–115. Crossref DOI: https://doi.org/10.1260/0144-5987.28.2.105

(26). J. Wang, T. Nakazato, K. Sakanishi, O. Yamada, H. Tao, I. Saito, Talanta 68 (2006) 1584–1590. Crossref DOI: https://doi.org/10.1016/j.talanta.2005.08.034

(27). J. Wang, T. Nakazato, K. Sakanishi, O. Yamada, H. Tao, I. Saito, Anal. Chim. Acta 514 (2004) 115–124. Crossref DOI: https://doi.org/10.1016/j.aca.2004.03.040

(28). W. Klemm, G. Bombach, Fresenius J. Anal. Chem. 370 (2001) 641–646. Crossref DOI: https://doi.org/10.1007/s002160100848

(29). J. Terán-Baamonde, A. Carlosena, R.M. Soto- Ferreiro, J.M. Andrade, A. Cantarero-Roldán, S. Muniategui-Lorenzo, J. Anal. At. Spectrom. 35 (2020) 580?591. Crossref DOI: https://doi.org/10.1039/C9JA00335E

(30). N. Miliszkiewicz, S. Walas, A. Tobiasz, J. Anal. At. Spectrom. 30 (2015) 327-338. Crossref DOI: https://doi.org/10.1039/C4JA00325J

(31). GOST 28974-91 Brown coals, hard coals and anthracites. Methods for determination of beryllium, boron, manganese, barium, chromium, nickel, cobalt, lead, gallium, vanadium, copper, zinc, molybdenum, yttrium and lanthanum.

Downloads

Published

25-07-2022

How to Cite

Kolmykov, R. P. (2022). Determination of Boron, Lithium and Some Metals in Fly Ash by Laser Ablation ‒ Inductively Coupled Plasma ‒ Optical Emission Spectrometry. Eurasian Chemico-Technological Journal, 24(2), 123–129. https://doi.org/10.18321/ectj1324

Issue

Section

Article