Determination of Boron, Lithium and Some Metals in Fly Ash by Laser Ablation ‒ Inductively Coupled Plasma ‒ Optical Emission Spectr ometry

  • Roman P. Kolmykov Federal Research Center of Coal and Coal-Chemistry of SB RAS, pr. Sovetskiy 18, Kemerovo, Russia
Keywords: Laser ablation, Fly ash, ICP-OES, Elemental analysis

Abstract

 To avoid potentially harmful wet sample preparation is offered to use laser ablation (LA) ‒ inductively coupled plasma ‒ optical emission spectrometry (ICP-OES) as a method for the elemental analysis of fly ash for boron, lithium, and some metals. For this purpose, synthetic samples were prepared by spiking with dissolved standards. As a result, great stability of calibration curves was achieved. It was found that a particle diameter less than 80 μm in fly ash is enough to have a satisfying homogeneity for successful calibration in the method of standard additions. The average recovery test for reference materials used in the study was 16–77% of the certified values for the elements observed. The low results might be the effect of spiking with calibration samples in the liquid state. This type of analysis requires further investigation. According to the results of elemental analysis, the content of boron and lithium was determined for ZUK-2 and SO-1, which was not previously noticed in other papers.

References

(1). S. Singh, N.P. Singh, R. Rani, Eur. Chem. Bull. 9 (2020) 360–365. Crossref

(2). J. Wu, F. Tou, Y. Yang, C. Liu, J.C. Hower, M. Baalousha, G. Wang, M. Liu, M.F. Hochella, Environ. Sci. Technol. 55 (2021) 6644–6654. Crossref

(3). Y. Itaya, K. Kuninishi, Y. Hashimoto, J. Mater. Cycles. Waste Manag. 24 (2022) 250–258. Crossref

(4). N. Rivera, D. Hesterberg, N. Kaur, O.W. Duckworth, Energy Fuels 31 (2017) 9652–9659. Crossref

(5). P. Liu, Q. Wang, H. Jung, Y. Tang, Energy Fuels 34 (2020) 14333–14343. Crossref

(6). F.E. Huggins, M. Rezaee, R.Q. Honaker, J.C. Hower, Waste Manag. 51 (2016) 105–110. Crossref

(7). J. Haberl, R. Koralewska, S. Schlumberger, M. Schuster, Waste Manag. 75 (2018) 361–371. Crossref

(8). M. Xu, Y. Wu, P. Zhang, Z. Liu, Z. Hu, Q. Lu, Environ. Sci. Technol. 56 (2022) 2582–2592. Crossref

(9). H. Tri, B.M. Petrusa, M. Olvianas, W. Suprapta, F.A. Setiawan, A. Prasetya, Sutijana, F. Anggara, J. Environ. Chem. Engineer. 8 (2020) 104116 Crossref

(10). I. Acar, M.J. Atalay, Fuel 180 (2016) 97–105. Crossref

(11). E.V. Fomenko, N.N. Anshits, N.G. Vasilieva, O.A. Mikhaylova, E.S. Rogovenko, A.M. Zhizhaev, A.G.J.E. Anshits, Energy Fuels 29 (2015) 5390–5403. Crossref

(12). P. Liu, R. Huang, Y. Tang, Environ. Sci. Technol. 53 (2019) 5369–5377. Crossref

(13). M.C. Zuma, P.N. Nomngongo, N. Mketo, Minerals 11 (2021) 1103. Crossref

(14). R.L. Thompson, T. Bank, S. Montross, E. Roth, B. Howard, C. Verba, Spectrochim. Acta B 143 (2018) 1–11. Crossref

(15). ASTM D 3682-01 Standard test method for major and minor elements in combustion residues from coal utilization process.

(16). ASTM D 6349-01 Standard test method for determination of major and minor elements in coal and coke by inductively coupled plasma-atomic emission spectrometry.

(17). J.E. Eriksson, T. Khazraie, L. Hupa, TMS Annual Meeting & Exhibition, Springer, Cham., 2018, pp. 253–263. Crossref

(18). M.H. Piispanen, S.A. Arvilommi, B. Van den Broeck, L.H. Nuutinen, M.S. Tiainen, P.J. Perämäki, R.S. Laitinen, Energy Fuels 23 (2009) 3451–3456. Crossref

(19). ASTM D 3683-94 Standard Test Method for Trace Elements in Coal and Coke Ash by Atomic Absorption.

(20). iTEVA iCAP Software Issue 9.5. Thermo Fisher Scientific Inc. 2011.

(21). A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2021). NIST Atomic Spectra Database (version 5.9), [Online]. Available: URL [Fri Aug 19 2022]. National Institute of Standards and Technology, Gaithersburg, MD. Crossref

(22). C. Yafa, J.G. Farmer, Anal. Chim. Acta 557 (2006) 296–303. Crossref

(23). J. Sysalova, J. Szakova, Environ. Research 101 (2006) 287–293. Crossref

(24). A. Stankova, N. Gilon, L. Dutruch, V. Kanicky, J. Anal. At. Spectrom. 26 (2011) 443–449. Crossref

(25). A. Saydut, Energy Explor. Exploit. 28 (2010) 105–115. Crossref

(26). J. Wang, T. Nakazato, K. Sakanishi, O. Yamada, H. Tao, I. Saito, Talanta 68 (2006) 1584–1590. Crossref

(27). J. Wang, T. Nakazato, K. Sakanishi, O. Yamada, H. Tao, I. Saito, Anal. Chim. Acta 514 (2004) 115–124. Crossref

(28). W. Klemm, G. Bombach, Fresenius J. Anal. Chem. 370 (2001) 641–646. Crossref

(29). J. Terán-Baamonde, A. Carlosena, R.M. Soto- Ferreiro, J.M. Andrade, A. Cantarero-Roldán, S. Muniategui-Lorenzo, J. Anal. At. Spectrom. 35 (2020) 580‒591. Crossref

(30). N. Miliszkiewicz, S. Walas, A. Tobiasz, J. Anal. At. Spectrom. 30 (2015) 327‒338. Crossref

(31). GOST 28974-91 Brown coals, hard coals and anthracites. Methods for determination of beryllium, boron, manganese, barium, chromium, nickel, cobalt, lead, gallium, vanadium, copper, zinc, molybdenum, yttrium and lanthanum.

Published
2022-07-25
How to Cite
[1]
R. Kolmykov, “Determination of Boron, Lithium and Some Metals in Fly Ash by Laser Ablation ‒ Inductively Coupled Plasma ‒ Optical Emission Spectr ometry”, Eurasian Chem.-Technol. J., vol. 24, no. 2, pp. 123-129, Jul. 2022.
Section
Articles