Determination of Boron, Lithium and Some Metals in Fly Ash by Laser Ablation ‒ Inductively Coupled Plasma ‒ Optical Emission Spectrometry
DOI:
https://doi.org/10.18321/ectj1324Keywords:
Laser ablation, Fly ash, ICP-OES, Elemental analysisAbstract
To avoid potentially harmful wet sample preparation is offered to use laser ablation (LA) ‒ inductively coupled plasma ‒ optical emission spectrometry (ICP-OES) as a method for the elemental analysis of fly ash for boron, lithium, and some metals. For this purpose, synthetic samples were prepared by spiking with dissolved standards. As a result, great stability of calibration curves was achieved. It was found that a particle diameter less than 80 ?m in fly ash is enough to have a satisfying homogeneity for successful calibration in the method of standard additions. The average recovery test for reference materials used in the study was 16–77% of the certified values for the elements observed. The low results might be the effect of spiking with calibration samples in the liquid state. This type of analysis requires further investigation. According to the results of elemental analysis, the content of boron and lithium was determined for ZUK-2 and SO-1, which was not previously noticed in other papers.
References
(1). S. Singh, N.P. Singh, R. Rani, Eur. Chem. Bull. 9 (2020) 360–365. Crossref
(2). J. Wu, F. Tou, Y. Yang, C. Liu, J.C. Hower, M. Baalousha, G. Wang, M. Liu, M.F. Hochella, Environ. Sci. Technol. 55 (2021) 6644–6654. Crossref
(3). Y. Itaya, K. Kuninishi, Y. Hashimoto, J. Mater. Cycles. Waste Manag. 24 (2022) 250–258. Crossref
(4). N. Rivera, D. Hesterberg, N. Kaur, O.W. Duckworth, Energy Fuels 31 (2017) 9652–9659. Crossref
(5). P. Liu, Q. Wang, H. Jung, Y. Tang, Energy Fuels 34 (2020) 14333–14343. Crossref
(6). F.E. Huggins, M. Rezaee, R.Q. Honaker, J.C. Hower, Waste Manag. 51 (2016) 105–110. Crossref
(7). J. Haberl, R. Koralewska, S. Schlumberger, M. Schuster, Waste Manag. 75 (2018) 361–371. Crossref
(8). M. Xu, Y. Wu, P. Zhang, Z. Liu, Z. Hu, Q. Lu, Environ. Sci. Technol. 56 (2022) 2582–2592. Crossref
(9). H. Tri, B.M. Petrusa, M. Olvianas, W. Suprapta, F.A. Setiawan, A. Prasetya, Sutijana, F. Anggara, J. Environ. Chem. Engineer. 8 (2020) 104116 Crossref
(10). I. Acar, M.J. Atalay, Fuel 180 (2016) 97–105. Crossref
(11). E.V. Fomenko, N.N. Anshits, N.G. Vasilieva, O.A. Mikhaylova, E.S. Rogovenko, A.M. Zhizhaev, A.G.J.E. Anshits, Energy Fuels 29 (2015) 5390–5403. Crossref
(12). P. Liu, R. Huang, Y. Tang, Environ. Sci. Technol. 53 (2019) 5369–5377. Crossref
(13). M.C. Zuma, P.N. Nomngongo, N. Mketo, Minerals 11 (2021) 1103. Crossref
(14). R.L. Thompson, T. Bank, S. Montross, E. Roth, B. Howard, C. Verba, Spectrochim. Acta B 143 (2018) 1–11. Crossref
(15). ASTM D 3682-01 Standard test method for major and minor elements in combustion residues from coal utilization process.
(16). ASTM D 6349-01 Standard test method for determination of major and minor elements in coal and coke by inductively coupled plasma-atomic emission spectrometry.
(17). J.E. Eriksson, T. Khazraie, L. Hupa, TMS Annual Meeting & Exhibition, Springer, Cham., 2018, pp. 253–263. Crossref
(18). M.H. Piispanen, S.A. Arvilommi, B. Van den Broeck, L.H. Nuutinen, M.S. Tiainen, P.J. Perämäki, R.S. Laitinen, Energy Fuels 23 (2009) 3451–3456. Crossref
(19). ASTM D 3683-94 Standard Test Method for Trace Elements in Coal and Coke Ash by Atomic Absorption.
(20). iTEVA iCAP Software Issue 9.5. Thermo Fisher Scientific Inc. 2011.
(21). A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team (2021). NIST Atomic Spectra Database (version 5.9), [Online]. Available: URL [Fri Aug 19 2022]. National Institute of Standards and Technology, Gaithersburg, MD. Crossref
(22). C. Yafa, J.G. Farmer, Anal. Chim. Acta 557 (2006) 296–303. Crossref
(23). J. Sysalova, J. Szakova, Environ. Research 101 (2006) 287–293. Crossref
(24). A. Stankova, N. Gilon, L. Dutruch, V. Kanicky, J. Anal. At. Spectrom. 26 (2011) 443–449. Crossref
(25). A. Saydut, Energy Explor. Exploit. 28 (2010) 105–115. Crossref
(26). J. Wang, T. Nakazato, K. Sakanishi, O. Yamada, H. Tao, I. Saito, Talanta 68 (2006) 1584–1590. Crossref
(27). J. Wang, T. Nakazato, K. Sakanishi, O. Yamada, H. Tao, I. Saito, Anal. Chim. Acta 514 (2004) 115–124. Crossref
(28). W. Klemm, G. Bombach, Fresenius J. Anal. Chem. 370 (2001) 641–646. Crossref
(29). J. Terán-Baamonde, A. Carlosena, R.M. Soto- Ferreiro, J.M. Andrade, A. Cantarero-Roldán, S. Muniategui-Lorenzo, J. Anal. At. Spectrom. 35 (2020) 580?591. Crossref
(30). N. Miliszkiewicz, S. Walas, A. Tobiasz, J. Anal. At. Spectrom. 30 (2015) 327-338. Crossref
(31). GOST 28974-91 Brown coals, hard coals and anthracites. Methods for determination of beryllium, boron, manganese, barium, chromium, nickel, cobalt, lead, gallium, vanadium, copper, zinc, molybdenum, yttrium and lanthanum.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eurasian Chemico-Technological Journal
This work is licensed under a Creative Commons Attribution 4.0 International License.
You are free to: Share — copy and redistribute the material in any medium or format. Adapt — remix, transform, and build upon the material for any purpose, even commercially.
Eurasian Chemico-Technological Journal applies a Creative Commons Attribution 4.0 International License to articles and other works we publish.
Subject to the acceptance of the Article for publication in the Eurasian Chemico-Technological Journal, the Author(s) agrees to grant Eurasian Chemico-Technological Journal permission to publish the unpublished and original Article and all associated supplemental material under the Creative Commons Attribution 4.0 International license (CC BY 4.0).
Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.