Mechanical Activation as a Method to Regulate Morphology, Texture and Surface Functional Composition of Carbon-Mineral Materials Derived from Sapropel
DOI:
https://doi.org/10.18321/ectj1325Keywords:
Sapropel, Mechanical activation, Pore distribution, Carbon-mineral materialAbstract
Data on the synthesis of carbon-mineral materials (CMM) through carbonization of native sapropel after preliminary mechanical activation (MA) in the air environment are presented. The effect of MA parameters (time, the size and acceleration of milling bodies) on the fractional composition and morphology of sapropel is investigated. MA for 5‒10 min promotes the dispersion of sapropel particles, while a further increase in treatment time causes their partial agglomeration. It is demonstrated that preliminary MA of native sapropel leads to changes in the texture parameters and acidity of the surface of CMM obtained after the carbonization stage. An increase in specific surface area from 90 to 560 m2g-1 is observed, with an increase in the adsorption pore volume from 0.16 to 0.52 cm3g-1 as a result of an increase in the fraction of micropores in the formed CMM. Despite this fact, CMM samples still contain large pores, and the fraction of meso- and macropores is 70%. In addition, a decrease in pH of the point of zero charge occurs as a consequence of an increase in the content of acidic oxygen-containing groups. The discovered effect is essential for the formation of sapropel-based materials with required properties and for broadening their application area.
References
(1). V.S. Arutyunov, G.V. Lisichkin, Russ. Chem. Rev. 8 (2017) 777‒804. Crossref DOI: https://doi.org/10.1070/RCR4723
(2). D. Pudasainee, V. Kurian, R. Gupta. Coal: Past, Present, and Future Sustainable Use. In: Future Energy (3rd ed.) (2020) 21‒48. Crossref DOI: https://doi.org/10.1016/B978-0-08-102886-5.00002-5
(3). H. Katalambula, R. Gupta, Energy Fuels 23 (2009) 3392‒3405. Crossref DOI: https://doi.org/10.1021/ef801140t
(4). V. Obuka, Sapropel for the development of biocomposite materials: properties and application possibilities, 2021.
(5). V. Obuka, M. Boroduskis, A. Ramata-Stunda, L. Klavins, M. Klavins, Agronomy Research 16 (2018) 1142‒1149. Crossref
(6). O.I. Krivonos, O.B. Belskaya, J. Supercrit. Fluids 166 (2020) 104991. Crossref DOI: https://doi.org/10.1016/j.supflu.2020.104991
(7). A. Klavina, A. Auce, I. Vanadzins, A. Silova, L. Dobkevica, Environment Technology Resources Proceedings of the International Scientific and Practical Conference, June 2019, 3:114. Crossref DOI: https://doi.org/10.17770/etr2019vol3.4135
(8). O.I. Krivonos, G.V. Plaksin, Solid Fuel Chem. 49 (2015) 36‒40. Crossref DOI: https://doi.org/10.3103/S0361521915010061
(9). E.N. Terekhova, A.V. Lavrenov, A.V. Shilova, T.V. Kireeva, G.G. Saveleva, M.V. Trenikhin, O.B. Belskaya, Russ. J. Appl. Chem. 90 (2017) 1990‒1997. Crossref DOI: https://doi.org/10.1134/S107042721712014X
(10). E.N. Terekhova, O.I. Krivonos, O.B. Belskaya, Solid Fuel Chem. 54 (2020) 373‒384. Crossref DOI: https://doi.org/10.3103/S0361521920060129
(11). A. Ahmadpour, D.D. Do, Carbon 34 (1996) 471‒479. Crossref DOI: https://doi.org/10.1016/0008-6223(95)00204-9
(12). B.G. Ershov, Her. Russ. Acad. Sci. 83 (2013) 437‒447. Crossref DOI: https://doi.org/10.1134/S1019331613090050
(13). S.A. Semenova, N.I. Fedorova, A.N. Zaostrovskii, Z.R. Ismagilov, Solid Fuel Chem. 47 (2013) 83‒87. Crossref DOI: https://doi.org/10.3103/S0361521913020109
(14). O.I. Krivonos, G.V. Plaksin, Russ. J. Phys. Chem. B 4 (2010) 1171‒1177. Crossref DOI: https://doi.org/10.1134/S1990793110080014
(15). E. Boldyreva, Chem. Soc. Rev. 42 (2013) 7719‒7738. Crossref DOI: https://doi.org/10.1039/c3cs60052a
(16). H. Ji, X. Mi, Q. Tian, C. Liu, J. Yao, S. Ma, G. Zeng, Sci. Total Environ. 784 (2021) 147100. Crossref DOI: https://doi.org/10.1016/j.scitotenv.2021.147100
(17). J. Li, Z. Li, Y. Yang, C. Wang, L. Sun, Powder Technol. 339 (2018) 102–110. Crossref DOI: https://doi.org/10.1016/j.powtec.2018.08.006
(18). A.P. Burdukov, E.B. Butakov, A.V. Kuznetsov, G.V. Chernova, P.E. Plyusnin, Combust. Explos. Shock Waves 55 (2019) 562–565. Crossref DOI: https://doi.org/10.1134/S001050821905006X
(19). S.M. Kolesnikova, P.N. Kuznetsov, Soil Fuel Chem. 42 (2008) 80–81. Crossref DOI: https://doi.org/10.3103/S0361521908020043
(20). G.E. Christidis, F. Dellisanti, G. Valdre, P. Makri, Clay Miner. 40 (2005) 511–522. Crossref DOI: https://doi.org/10.1180/0009855054040188
(21). Q. Hou, Y. Han, J. Wang, Y. Dong, J. Pan, Sci. Bull. 62 (2017) 965–970. Crossref DOI: https://doi.org/10.1016/j.scib.2017.06.004
(22). Z. Hu, H. Zhou, W. Zhang, S. Wu, Processes 8 (2020) 900. Crossref DOI: https://doi.org/10.3390/pr8080900
(23). E.G. Avvakumov, M. Senna, N.V. Kosova, Soft mechanochemical synthesis: a basis for new chemical technologies. Springer Science & Business Media, 2001, 208 p.
(24). D. Dimitrov, Geology and Non-traditional resources of the Black Sea. Lambert Academic Publishing, 2010. Saarbrucken, Germany, 244 p.
(25). J. Park, J.R. Regalbuto, J. Colloid Interf. Sci. 175 (1995) 239–252. Crossref DOI: https://doi.org/10.1006/jcis.1995.1452
(26). H.P. Boehm, Adv. Catal. 16 (1966) 197–274. Crossref DOI: https://doi.org/10.1016/S0360-0564(08)60354-5
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Eurasian Chemico-Technological Journal

This work is licensed under a Creative Commons Attribution 4.0 International License.