Key Peculiarities of the Pyrolysis Behavior of Different Rank Coals, and Characterization of the Pyrolysis Products

  • P.N. Kuznetsov Siberian Federal University, Institute of Petroleum and Gas, pr. Svobodny, 82, Krasnoyarsk, Russia; Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, str. Akademgorodok 50/24, Krasnoyarsk, Russia
  • O.Y. Fetisova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, str. Akademgorodok 50/24, Krasnoyarsk, Russia
  • L.I. Kuznetsova Institute of Chemistry and Chemical Technology SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, str. Akademgorodok 50/24, Krasnoyarsk, Russia
  • X. Fan College of Chemical and Biological Engineering, Shandong University of Science and Technology, 579 Qianwangang road, Qingdao, Shandong, China
  • B. Avid Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, ave. Enkhtaivan, 54b, Ulaanbaatar, Mongolia
  • B. Purevsuren Institute of Chemistry and Chemical Technology, Mongolian Academy of Sciences, ave. Enkhtaivan, 54b, Ulaanbaatar, Mongolia
Keywords: Coal, Pyrolysis, Thermogravimetry, Plastometry, Activation energy

Abstract

The chemical composition, structural and plastometric properties of typical different-ranked coals from Mongolia deposits were studied. The non-isothermal iso-conversion Ozawa-Flynn-Wall method was used to assess kinetic parameters and to differentiate decomposition steps. Key peculiarities of the pyrolysis kinetics of brown and bituminous coals were revealed and discussed in terms of the composition and plastometric properties of coals. Brown coal was shown to undergo three decomposition steps with ever increasing activation energy as temperature increased because of the decomposition of thermally more and more stable molecular fragments. The pyrolysis of bituminous coals occurred in four steps, the activation energy having an extreme mode of temperature dependence. An important new finding was that the temperature range of the second, major pyrolysis step well corresponded to that between the softening and resolidification temperatures according to Gieseler plastometry, so that the decomposition of bituminous coals at the second step proceeded in a fluid-like medium, moreover, with constant activation energy. The yield and composition of the pyrolysis products obtained under isothermal conditions were also characterized depending on coal rank and temperature, and the ways for qualified utiliza tions were offered.

 

References

(1). B.-O. Erdenetsogt, I. Lee, D. Bat-Erdene, L. Jargal, Int. J. Coal Geol. 80 (2009) 87–104. Crossref

(2). A. Ariunaa, B. Zongqing, B. Jin, J. Narangerel, B. Purevsuren, F. Zhihao, H. Ranran, H. Chong, Carbon Resour. Convers. 4 (2021) 19–27. Crossref

(3). B. Avid, B. Purevsuren, J. Temuujin, Advances in Energy Research 22 (2016) 159–178.

(4). B. Purevsuren, Y. Davaajav, S. Batbilig, J. Namkhainorov, F. Karaca, T.J. Morgan, P.A. Rodriguez, F.H. Tay, S. Kazarian, A.A. Herod, R. Kandiyoti, Adv. Chem. Engineer. Sci. 3 (2013) 130–144. Crossref

(5). B. Purevsuren, S. Batbileg, L.I. Kuznetsova, D. Batkhishig, G. Namkhainorov, P.N. Kuznetsov, Solid Fuel Chem. 53 (2019) 65–70. Crossref

(6). P.N. Kuznetsov, S.M. Kolesnikova, L.I. Kuznetsova, L.S. Tarasova, Z.R. Ismagilov, Solid Fuel Chem. 49 (2015) 80–86. Crossref

(7). U. Gombojav, I. Jambal, E. Byambajav, J. Miner. Mater. Char. Eng. 8 (2020) 97–106. Crossref

(8). M.L. Ulanovsky, A.N. Likhenko, Coke Chem. 6 (2009) 13–20. Crossref

(9). N.I. Fedorova, T.S. Manina, Z.R. Ismagilov, B. Avid, Solid Fuel Chem. 49 (2015) 129–134. Crossref

(10). P.R. Solomon, M.A. Serio, E.M. Suuberg, Prog. Energy Combust. 18(1992) 133–220. Crossref

(11). J. Yan, Q. Yang, L. Zhang, Z. Lei, Z. Li, Z. Wang, S. Ren, S. Kang, H. Shui, Carbon Resour. Convers. 3 (2020) 173–181. Crossref

(12). S. Niksa, Energy Fuels 5 (1991) 673–683. Crossref

(13). R. Kandiyoti, A. Herod, K. Bartle, T. Morgan. Solid fuels and heavy hydrocarbon liquids. In: Thermal Characterization and Analysis (2nd ed.), 2016. Crossref

(14). A. Arenillas, F. Rubiera, C. Pevida, J. Pis, J. Anal. Appl. Pyrol. 58–59 (2001) 685–701. Crossref

(15). G.N. Pretorius, J.R. Bunt, M. Gräbner, H. Neomagus, F.B. Waanders, R.C. Everson, C.A. Strydom, J. Anal. Appl. Pyrol. 128 (2017) 156– 167. Crossref

(16). O.Y. Fetisova, N.M. Mikova, O.P. Taran, Kinet. Catal. 61 (2020) 846–853. Crossref

(17). M. Kumar, A.M. Akhtar, V. Kumar, S. Liu, C.-Z. Li, H. Vuthaluru, Chemical Engineering Journal Advances 8 (2021) 100159. Crossref

(18). C. Geng, S. Li, C. Yue, Y. Ma, J. Energy Inst. 89 (2016) 725–730. Crossref

(19). S. Zhang, F. Zhu, C. Bai, L. Wen, C. Zou, J. Anal. Appl. Pyrol. 104 (2013) 660–666. Crossref

(20). Y. Xu, Y. Zhang, G. Zhang, Y. Guo, J. Zhang, G. Li, J. Therm. Anal. Calorim. 122 (2015) 975– 984. Crossref

(21). N.A. Liu, W.C. Fan, Thermochim. Acta 338 (1999) 85–94. Crossref

(22). R. Ebrahimi-Kahrizsangi, M.H. Abbasi, T. Nonferr. Metal. Soc. 18 (2008) 217–221. Crossref

(23). H.L. Friedman, J. Polym. Sci. Part C: Polym. Symp. 6 (1964) 183–195. Crossref

(24). R.K. Mishra, K. Mohanty, Bioresour. Technol. 251 (2018) 63–74. Crossref

(25). J.H. Flynn, L.A. Wall, J. Polym. Sci. Part B: Polym. Lett. 4 (1966) 323–328. Crossref

(26). T. Ozawa, Bull. Chem. Soc. Jpn. 38 (1965) 1881–1886. Crossref

(27). W. Zheng, L. Liu, X.Y. Zhao, J.W. He, A. Wang, T.W. Chan, S. Wu, Polym. Degrad. Stabil. 120 (2015) 377–383. Crossref

(28). C.-Z. Li, Fuel 112 (2013) 609–623. Crossref

(29). Z. Gao, M. Zheng, D. Zhang, W. Zhang, J. Energy Inst. 89 (2016) 544–559. Crossref

(30). Z. Niu, G. Liu, H. Yin, C. Zhou, D. Wu, B. Yousaf, C. Wang, Energ. Convers. Manage. 124 (2016) 180–188. Crossref

(31). H. Song, G. Liu, J. Zhang, J. Wu, Fuel Process. Technol. 156 (2017) 454–460. Crossref

(32). W. Du, G. Wang, Y. Wang, X. Liu, Appl. Therm. Eng. 152 (2019) 169–174. Crossref

(33). J. Yan, M. Liu, Z. Feng, Z. Bai, H. Shui, Z. Li, Z. Lei, Z. Wang, S. Ren, S. Kang, H. Yan, Fuel 261 (2020) 116359. Crossref

(34). M.D. Casal, M.F. Vega, E. Diaz-Faes, C. Barriocanal, Int. J. Coal Geol. 195 (2018) 415– 422. Crossref

(35). M. Sobkowiak, P.C. Painter, Fuel 71(10) (1992) 1105–1125. Crossref

(36). M. Sobkowiak, P.C. Painter, Energy Fuels 9 (1995) 359−363. Crossref

(37). L. Lu, V. Sahajwalla, C. Kong, D. Harris, Carbon 39 (2001) 1821–1833. Crossref

(38). J. Alcañiz-Monge, D. Cazorla-Amoros, A. Linares-Solano, Fuel 80 (2001) 41−48. Crossref

(39). S. Supaluknari, F.P. Larkins, P. Redlich, W.R. Jackson, Fuel Process. Technol. 23 (1989) 47– 61. Crossref

(40). J.G. Speight, Handbook of coal analysis, 2th ed, Wiley, New Jersey, 2015. Crossref

Published
2022-07-25
How to Cite
[1]
P. Kuznetsov, O. Fetisova, L. Kuznetsova, X. Fan, B. Avid, and B. Purevsuren, “Key Peculiarities of the Pyrolysis Behavior of Different Rank Coals, and Characterization of the Pyrolysis Products”, Eurasian Chem.-Technol. J., vol. 24, no. 2, pp. 137-147, Jul. 2022.
Section
Articles